Fundamental Observations Information carriers

Standard Model of Elementary Particles

Fundamental Observations The electromagnetic spectrum

Fundamental Observations Collecting photons: telescopes

ELT, Chile

GBT, **USA**

Fundamental Observations Detecting and analyzing photons

CCD, Gaia focal plane

Schema spectrograph

Fundamental Observations Other types of observatories

GWs, LIGO

Neutrinos, Super kamiokande

Fundamental Observations

Pillars of Modern Cosmological Paradigm

- Universe is isotropic (and homogeneous)
- Night Sky is Dark
- Linear Expansion
- Light Element Abundances
- Microwave Background Radiation

+

Statistics of "Large-Scale Structures (LSS)"

Cosmological Principle

On large scales, the universe is isotropic

The Cosmic Microwave Background (CMB)

Differences in temperature of ~10⁻⁵

Wilkinson Microwave Anisotropy Probe: February 13, 2003

Cosmological Principle

- Copernican principle: our location in space is not special
- Isotropy + Copernican principle = homogeneity = "cosmological principle"

 "Perfect cosmological principle": the universe is isotropic and homogeneous in space AND time, not consistent with observations

Hubble Ultra Deep Field

Hubble Ultra Deep Field Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, S. Beckwith (STScl) and the HUDF Team

STScI-PRC04-07a

- Deepest view of the Universe
- Most objects are galaxies not stars
- Faintest galaxies 13 billion lyr away
- Tiny area of sky
- Record holders: galaxy z~ 10.2-11.09 quasar z~7.1 7.54 gamma-ray burst z~8.2

Hubble Ultra Deep Field – Zoom

Quasars and Galaxies Evolve

Quasar space density

Star formation rate

redshift

redshift

(Madau 1999)

Quasars and Galaxies Evolve

Characteristic epochs of galaxy/quasar activity

- coincide at z~2
- which came first, the galaxies or their nuclei?

Galaxies in the past

- smaller
- more irregular
- preferentially elliptical
- contain less heavy elements

Quasars in the past

- more luminous
- more numerous
- same metallicity

Fundamental Observations

Pillars of Modern Cosmological Paradigm

- Universe is isotropic (and homogeneous)
- Night Sky is Dark
- Linear Expansion
- Light Element Abundances
- Microwave Background Radiation

+

• Statistics of Large-Scale Structures

2. The Night Sky is Dark

Is this a problem?

 Not if stars are points of light stuck onto a dome

- But yes, in post-Copernican models
 - stars are scattered through space
 - (or galaxies are...)

The Simplest Model

- Universe infinitely large
- Uniformly filled with stars
- Infinitely old

Surface Brightness of the Sky

• Sum over all stars: J is infinitely large

$$\boldsymbol{J} = \frac{1}{4\pi} \int_{0}^{\infty} \frac{\boldsymbol{L}}{4\pi r^{2}} \boldsymbol{n} (4\pi r^{2} dr) = \frac{\boldsymbol{n} \boldsymbol{L}}{4\pi} \int_{0}^{\infty} dr = \infty$$

Sum up to "crowding" distance d=1/(nπR²)

$$\boldsymbol{J} = \frac{\boldsymbol{n}\boldsymbol{L}}{4\pi} \int_{0}^{d} \boldsymbol{d}\boldsymbol{r} = \frac{\boldsymbol{n}\boldsymbol{L}}{4\pi} \frac{1}{\boldsymbol{n}\pi\boldsymbol{R}^{2}} = \frac{\boldsymbol{L}}{4\pi^{2}\boldsymbol{R}^{2}}$$

Still as bright as the disk of an individual star

What does this imply?

- One or more of the assumptions are wrong
 - recognized to be a problem already in 1576
 by Thomas Digges (vs Copernicus 1543)
- Obscuring stars by dust does not work
 - proposed as a solution in 1744 by de Chesaux and in 1826 by Heinrich Olbers
 - but dust will heat and radiate at same brightness
- Infinitely old, infinitely large, Euclidean universe is self-contradictory.
 - innocuous-looking puzzle lasts into 20th century (!) until discovery of the expansion of the universe

Fundamental Observations

Pillars of Modern Cosmological Paradigm

- Universe is isotropic (and homogeneous)
- Night Sky is Dark
- Linear Expansion
- Light Element Abundances
- Microwave Background Radiation

+

• Statistics of Large-Scale Structures

3. Linear Expansion

- Slipher (1912) starts measuring redshifts, interprets redshift $z=(\lambda_{obs} \lambda_{em}) / \lambda_{em}$ as due to motion of galaxies
- Edwin Hubble* proclaims linear expansion in 1929 using redshift vs distance to 20 galaxies – Cepheids!

(*) Georges Lemaitre (1927)

Redshift

spectrum of a nearby star vs a galaxy traveling at 12,000 km/s

Linear Expansion

• Hubble constant:

$H_0 = v/r = 500 \text{ km/s/Mpc}$

- Modern value: 73±0.8 km/s/Mpc (nearby SNe)
- Expansion not linear at large distance

"HST key project"

What does this imply?

- Galaxies recede from us ("explosion")
 would imply center to the Universe
- Uniform expansion of Universe
 - consistent with cosmological principle
 - extrapolated estimate for age: 1/H₀=13.7 Gyr
 - consistent with ages of oldest stars
 - solves Olbers' paradox (redshift, finite age)
- Inconsistent with Perfect Cosmological Principle
 - inspired steady-state model (late 1940s) requires continuous creation of new material at the (tiny) rate $d\rho/dt = 3 H_0 \rho = 6x10^{-28} \text{ kg/m}^3/\text{Gyr}$ (= 1 proton/m³/yr)

Universe is ACCELERATING!

- Gravity always attractive: causes deceleration
- BUT see modern Hubble diagram, based on using supernovae as calibrated "light-bulbs"
- Implies the presence of "something with large negative pressure"

Fundamental Observations

Pillars of Modern Cosmological Paradigm

- Universe is isotropic (and homogeneous)
- Night Sky is Dark
- Linear Expansion
- Light Element Abundances
- Microwave Background Radiation

+

• Statistics of Large-Scale Structures

PERIODIC TABLE OF THE ELEMENTS

GROUP

	1 IA							/ / /		+++	1/		http	://www.ktf-	split.hr/peri	odni/en/		18 VIIIA	
9	1 1.0079			RELATIV	E ATOMIC N	IASS (1)	Me	(a) 🗾	Semimetal	Nonme	stal							2 4.0026	
-ă_1	H		GRO	UP IUPAC		ROUPCAS		ali motal	ocimiteur	Té Choleo	acce clamon	\sim						He	
Id	HYDROGEN	2 11A		13				ali metai aline earth m	otol	17 Heloos	gens element	· 🔶	13 IIIA		15 VA	16 VIA		HELIUM	
	3 6.941	4 9.0122	ATOMIC N		10.811	_/		anite earth the		18 Noble	nae		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180	
2	Ti	Ro		WMBOI -	B	/ /		Lanthanide	,	Tel Noble	905	<u> </u>	R	C	N	0	F	No	
_	LI	DC			D	_/		Actinide	STAND	- qas	(25 °C; 101 k	(Pa)	D	C		0	T	110	
	11 22 000	12 24 205		BORUN			/		Ga	Ga - liquid Tc - synthetic			BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON	
<u> </u>	11 22.990	12 24.305		ELEN	MENT NAME	/ /			L	1	/	_	13 20.962	14 20.000	15 30.974	10 32.065	17 35.453	10 39.940	
3	Na	Mg					/		- VIIB -				AI	Si	P	S	CI	Ar	
/	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 / VB	6 /VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON	
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON	
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	
5	Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
.6	Ce	Ra	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	An	Ησ	ті	Ph	Ri	Po	At	Rn	
/	CAECUMA	Da	Lanthanide		Tanta	TUNCOTEN	DUCNIUM	03	IDIDUUM		Au	115	THATTAN	10			ACTATINE		Ĵ
	87 (223)	88 (226)	80 102	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)	TRALLIOM	114 (289)	BISMUTH	POLONIUM	ASTATINE	KADON	
7	E.	Da	89-105	TD C	IDIL	(300)	IDIL	TTT ~	TMA	ПТорос	IT Toppo	IT Taple		ПТор от					
,	Fr	Ka	Actinida	IKII	ШШ	2g	TESTET	IBIS	IMIT	Uum		UWD	$\langle \rangle$	Omd					
	FRANCIUM	RADIUM	Acumue	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM				3.	
	/			LANTHANI	DE											Copyright © 199	8-2003 EniG. (eni@ktf-solit.hr)	
(1) Pu	re Appl. Chem.,	e Appl. Chem., 73, No. 4, 667-683 (2001) ative atomic mass is shown with five ificant figures. For elements have no stable			58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97	
Re sig	lative atomic n nificant figures. P				Ce	Pr	Nd	Dim	Sm	Fu	Cd	Th	Dv	Ho	Fr	Tm	Vh	In	
nu inc	des, the value enclosed in brackets ates the mass number of the longest-lived			La	CC		1 TU		SIII	Lu	Gu	IU	Dy	110	E .	1 111	LU	Lu	
isc Ho	tope of the eleme wever three such	the element. three such elements (Th, Pa, and U) a characteristic terrestrial isotopic on, and for these an atomic weight is		ACTINIDE	CERIUM	PROSECUTINIUM	NEODYMIOM	PROMETHIOM	SAMARIUM	EUROPIUM	GAUOLINIUM	TERBIUM	UTSPRUSIUM	HOLMIUM	ERSIUM	THOLIOM	TTERBIUM	LOTETIOM	
do co	have a charac mposition, and fo			89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
tat	ulated.	lated.			Th	Pa	II	Nm	1Dnn	Am	Cim	TRILE	CE	TRe	TRim	Ma	No	TT .nº	
				ACTINUM	TH	14	UDAU	TAIN	TT (UI		CIUI			TUN	П. ПШ	TATION	1005		
Ed	itor: Aditya Vardh	ian (adivar@netl	linx.com)	ACTINIOM	THORIUM	PROTACTINIUM	URANIUM	REPTONIUM	PLOTONIUM	AMERICIUM	CORIUM	DERKELIUM	GALIFORNIUM	EINSTEINIUM	FERMIUM	MENUELEVIUM	NOBELIUM	LAWRENCIOM	

PERIODIC TABLE OF THE ELEMENTS (FOR COSMOLOGISTS)

18 VIIIA

2 4.0026

Helium

* everything else is called a "metal"

- * universe expands and cools rapidly, no time to fuse any other nuclei
- * rest of the elements are fused later, inside long-lived stars

4. Light Element Abundances

Observed abundances of light elements Hydrogen 75% Helium 24% Others 1%

- Helium problem:
 - stars would fuse He into C, N, O, etc
 - if universe started from 100% hydrogen,
 we would expect 75% H, 13% He, 12% others
 - problem solved if universe starts out with H + He

How about the rest of the elements?

Measuring Light Element Abundances

Helium abundance:

- measured in stellar spectra
 (Helium discovered & named after Sun)
- He can be produced in stars, too
- extrapolate to zero metalicity to subtract He from stellar nucleosynthesis

Lithium abundance:

- measured in stellar spectra
- Li is <u>depleted</u> in stars by mixing
- find plateau at high stellar mass (these stars have little mixing)

Deuterium Abundance

- Destroyed easily in stars
- Must look for gas that has never cycled through a star
- quasar absorption lines:
 - low-density gas
 - far back in time
 - extra neutron makes electron slightly more tightly bound
 - possible only with 10m telescopes (Keck)
 - $D/H = 10^{-5}$

Measuring the Density of the Universe

• Big Bang Nucleosynthesis (BBNS)

- can make precise calculations for relative abundances of light elements
- turns out very sensitive to baryon density

• Current results:

- imply 0.2 hydrogen atoms per cubic m
- a small fraction (~4 percent) of the so-called critical density:

 $\Omega(\text{baryons}) \sim 0.04$

Dark Matter

There are several other ways to measure mass density of the universe

• Motions of stars in galaxies

- Motions of galaxies in clusters
- Large-scale cosmic flows

Ω (total gravitating matter) ~ 0.30 ± 0.1

TABLE 3

THE BARYON BUDGET

Component	Central	Maximum	Minimum	Gradeª					
Observed at $z \approx 0$									
 Stars in spheroids Stars in disks	$\begin{array}{c} 0.0026 \ h_{70}^{-1} \\ 0.00086 \ h_{70}^{-1} \\ 0.000069 \ h_{70}^{-1} \\ 0.00033 \ h_{70}^{-1} \\ 0.00030 \ h_{70}^{-1} \\ 0.0026 \ h_{70}^{-1.5} \\ 0.0056 \ h_{70}^{-1.5} \\ 0.002 \ h_{70}^{-1} \\ 0.014 \ h_{70}^{-1} \\ 0.021 \end{array}$	$\begin{array}{c} 0.0043 \ h_{70}^{-1} \\ 0.00129 \ h_{70}^{-1} \\ 0.000116 \ h_{70}^{-1} \\ 0.00041 \ h_{70}^{-1} \\ 0.00037 \ h_{70}^{-1} \\ 0.00044 \ h_{70}^{-1.5} \\ 0.0115 \ h_{70}^{-1.5} \\ 0.003 \ h_{70}^{-1} \\ 0.030 \ h_{70}^{-1} \\ 0.041 \end{array}$	$\begin{array}{c} 0.0014 \ h_{70}^{-1} \\ 0.00051 \ h_{70}^{-1} \\ 0.000033 \ h_{70}^{-1} \\ 0.00025 \ h_{70}^{-1} \\ 0.00023 \ h_{70}^{-1} \\ 0.0014 \ h_{70}^{-1.5} \\ 0.0029 \ h_{70}^{-1.5} \\ 0.0007 \ h_{70}^{-1} \\ 0.0072 \ h_{70}^{-1} \\ 0.007 \end{array}$	A A A A A B C B 					
Gas components at $z \approx 3$									
 9. Damped absorbers 10. Lyα forest clouds 11. Intercloud gas (He II) 	$\begin{array}{c} 0.0015 \ h_{70}^{-1} \\ 0.04 \ h_{70}^{-1.5} \\ \cdots \end{array}$	$\begin{array}{c} 0.0027 \ h_{70}^{-1} \\ 0.05 \ h_{70}^{-1.5} \\ 0.01 \ h_{70}^{-1.5} \end{array}$	$\begin{array}{c} 0.0007 \ h_{70}^{-1} \\ 0.01 \ h_{70}^{-1.5} \\ 0.0001 \ h_{70}^{-1} \end{array}$	A — B B					
Abundances of:									
12. Deuterium13. Helium14. Nucleosynthesis	$\begin{array}{r} 0.04 \ h_{70}^{-2} \\ 0.010 \ h_{70}^{-2} \\ 0.020 \ h_{70}^{-2} \end{array}$	$\begin{array}{c} 0.054 \ h_{70}^{-2} \\ 0.027 \ h_{70}^{-2} \\ 0.027 \ h_{70}^{-2} \end{array}$	$0.013 h_{70}^{-2}$ 0.013 h_{70}^{-2}	A A 					

^a Confidence of evaluation, from A (robust) to C (highly uncertain).

Fukugita, Hogan, Peebles 1998

What does this imply?

- Light element abundances strongly support nucleosynthesis in "hot" big bang
- Presence of dark matter that cannot be baryonic (i.e. cannot affect nuclear reactions) weakly interacting massive particle (WIMP)?

Fundamental Observations

Pillars of Modern Cosmological Paradigm

- Universe is isotropic (and homogeneous)
- Night Sky is Dark
- Linear Expansion
- Light Element Abundances
- Microwave Background Radiation

+

• Statistics of Large-Scale Structures

5. Cosmic Microwave Background

- Hot radiation from the big bang, which has cooled to ~3 Kelvin by present epoch
- Predicted in 1948 (Alpher & Herman)
- First observed in 1965 (Penzias & Wilson)
- Extremely smooth, but seeds of structure discovered by COBE satellite (1992)
- Accounts for 3% of the static on your TV screen!

Cosmic Microwave Background progress

The CMB compared with other backgrounds

Extragalactic Background (Hauser & Dwek 2001)

Spectrum of CMB (from COBE; 1992)

Thermal Spectrum

- Extremely accurately measured quantity
- The most precisely measured example of a black-body spectrum

$$\varepsilon(f)df = \frac{8\pi h}{c^3} \frac{f^3 df}{\exp(hf/kT) - 1}$$

- Implies thermal equilibrium
- Too cold and dilute to achieve equilibrium today
 - real puzzle outside the big bang model
 - natural by product of hot dense phase

Cosmic Microwave Background

- Mean temperature: $T=2.725 \pm 0.001 \text{ K}$
- Spectral Deviation: Compton-y parameter

$$y \equiv \int \sigma_T n_e \frac{kT}{m_e c^2} dl \le 1.5 \times 10^{-5} \text{ (COBE 1992)}$$

• Energy Density: $u = a_B T^4 = 4.8 \times 10^{-34} \, g/cm^3$ $n_{\gamma} = 420 cm^{-3}$ $\langle hv \rangle = 6.3 \times 10^{-4} \, eV$ $\Omega_{\gamma} = 5 \times 10^{-5} \approx 10^{-3} \Omega_b$ $n_{\gamma} / n_b = 2 \times 10^9$

What does this imply?

Supports:

- Cosmological principle (isotropy)
- Laws of nature not varying even over cosmic scales
- Universe expanded
- Universe was much hotter in the past
- A puzzle: horizon problem. Inflation?

Fundamental Observations

Pillars of Modern Cosmological Paradigm

- Universe is homogeneous and isotropic
- Night Sky is Dark
- Linear Expansion
- Light Element Abundances
- Microwave Background Radiation

+

Statistics of Large-Scale Structures

CMB Anisotropies

- CMB angular and frequency structures contain a wealth of cosmological information
- Amplitude & statistics of temperature fluctuations consistent with gravitational structure formation
- This wealth of detail (to be discussed in future lectures) is all consistent with the hot big bang
 + cold dark matter structure formation model
- hard feat for alternative to replicate / postdict!

6. Large-Scale Structures

Modern Pillars of Standard Model: based on <u>inhomogeneities</u>

- CMB anisotropies e.g. power spectrum
- Galaxy distribution e.g. power spectrum
- Abundance of galaxy clusters
- Weak gravitational lensing statistics
- Lyman alpha forest absorption statistics

125 Mpc/h ~10 billion particles Millennium simulation Volker Springel, MPA

Galaxy Power Spectrum

Galaxy Cluster Abundance

Large X-ray survey with Chandra (Vikhlinin et al. 2009)

Weak Gravitational Lensing

Abell 1689

Weak Gravitational Lensing Power Spectrum Forecast by Song & Knox (2006); measured in 2016-2021 surveys (CFHTLenS, DES, KiDS, HSC)

