Astronomy 3602: Homework #2

Due Wednesday, October 13

Problem 1: Friedmann Equation for k > 0 (25 points).

The full Friedmann equation in general is

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\epsilon - \frac{k}{a^2}.$$
(1)

Consider the case when the Universe contains only non-relativistic matter, so that the energy density $\epsilon = \rho = \rho_0/a^3$. Note that we have set the speed of light c = 1, and ρ_0 is the present-day mass density of the universe (more generally, the subscript $_0$ on any parameter refers to the value of the parameter at the present epoch; hence t_0 is the present age of the Universe, and a_0 is the present-day scale factor). According to this convention, at the present day, $t = t_0$, we have $a_0 \equiv a(t_0) = 1$.

(a) Demonstrate that the following parametric solution

$$a(\theta) = \frac{4\pi G \rho_0}{3k} (1 - \cos \theta)$$
$$t(\theta) = \frac{4\pi G \rho_0}{3k^{3/2}} (\theta - \sin \theta)$$

solves this equation. Here θ is a parameter that runs from $0 \le \theta \le 2\pi$. (Hint: use the chain rule.) [15 points]

(b) Make a plot of both a and t as functions of the parameter θ . With the help of these, plot the evolution of the scale factor a(t). [10 points]

Problem 2: The Age of a Single-Component Universe (35 points).

(a) Show that if one assumes k = 0, then using the Friedmann equation, together with a measurement of the Hubble constant, one can derive t_0 , the age of the Universe. Recall that the Hubble constant is defined as $H_0 = (\dot{a}/a) |_{t=t_0}$. What is the value of t_0 if $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$? Express your answer in Gyr. [5 points]

(b) Consider a Universe with k > 0. For the fixed value of $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, is the current age of this Universe longer or shorter than it would be for k = 0? Make an argument by comparing your sketch for the solution for a(t) from Problem 1 to the solution $a \propto t^{2/3}$ for the case of k = 0. (Hint: you have to match the two solutions a(t) for k = 0 and for k > 0 to have the same amplitude, a_0 , and derivative, H_0 , at $t = t_0$). [6 points]

(c) Next, be more quantitative, and use the solution for the k > 0 universe from Problem 1 to derive an expression for t_0 that depends only on H_0 and θ_0 (but not on k). Given that the Universe is expanding now, what are the possible values of θ_0 ? What is the corresponding allowed range for t_0 . (Hint: you will have to use L'Hopital's rule repeatedly). [12 points]

(d) Use the solution for the k > 0 universe from Problem 1, and derive an expression for t_{max} , the time at which the Universe reaches maximum expansion, in terms of t_0 and θ_0 . Suppose we know the age of the universe is at least $(\pi/2 - 1)H_0^{-1} = 8.15$ Gyr (e.g. from the ages of the oldest stars). What is the shortest time $(t_{\text{max}} - t_0)$ we have to wait until the Universe stops expanding? [12 points]

Problem 3: Mixed Models with Matter + Radiation (20 points).

The present-day temperature of the cosmic microwave background is measured to be $T_{\rm r,0} = 2.73$ K. The present-day energy density in this radiation field is therefore $\epsilon_{\rm r,0} = \alpha T_{\rm r,0}^4$ (with $\alpha = 7.56 \times 10^{-16}$ J m⁻³ K⁻⁴ for black-body radiation). The present-day mass-density of the universe is measured to be approximately $\rho_{\rm m,0} = 3 \times 10^{-27}$ kg m⁻³. As mentioned in class, for non-relativistic matter, the energy density scales as $\epsilon_{\rm m} = \epsilon_{m,0}/a^3$, whereas for radiation, $\epsilon_{\rm r} = \epsilon_{\rm r,0}/a^4$. Throughout this problem, you can assume k = 0.

(a) Does matter or radiation contribute the dominant energy density in the present-day universe ? What is ratio of the current energy densities, $\epsilon_{r,0}/\epsilon_{m,0}$? What is the redshift at which the radiation and matter energy density are equal ? [8 points]

(b) As shown in class, the scale–factor in a one–component universe with matter only would evolve as $a(t) \propto t^{2/3}$, and in a radiation–only universe, it would evolve as $a(t) \propto t^{1/2}$. Sketch the evolution of a(t) for the universe with both matter and radiation, with the measured ratio of $\epsilon_{r,0}/\epsilon_{m,0}$. Plot log *a* vs log *t*. For a given measured H_0 , is this universe older or younger than it would be if one assumed radiation did not exist? [12 points]

Problem 4: The Age of Our Universe (20 points).

Consider a flat universe with k = 0 that has non-relativistic matter and a cosmological constant, with $\Omega_{\Lambda,0} + \Omega_{m,0} = 1$ (i.e., we will ignore radiation which affects the evolution only at very early times, and has only a small effect on the present age).

(a) Show that the Friedmann equation can be written as

$$\dot{a}^2 = H_0^2 \left[\frac{\Omega_{m,0}}{a} + (1 - \Omega_{m,0}) a^2 \right]$$
(2)

[5 points]

(b) Solve the above equation to obtain an explicit relation between the cosmic time t and redshift $(1 + z) \equiv 1/a$. (Hint: you will need the indefinite integral $\int dx (a + bx^2)^{-1/2} = b^{-1/2} \ln[x\sqrt{b} + \sqrt{a + bx^2}]$). [10 points]

(c) What is the current age if $\Omega_{m,0} = 0.3$, and $H_0 = 70 \text{ km/s/Mpc}$? The oldest and most distant known galaxy is called "GN-z11" with a confirmed redshift of z = 11.1. What was the age of the universe when the light from this galaxy was emitted ? [5 points]