Astronomy GR6001: Problem Set #4

Due in my office by Tuesday, November 2, 2021

Problem 1 (25 points):

Consider the most general form of a single monochromatic wave propagating in the direction \hat{k} at frequency ω , i.e. an elliptically polarized wave. Compute $d\sigma/d\Omega$, the differential cross-section for scattering such a wave off a free charge as a function of the direction towards the observer \hat{n} (i.e. the Thomson cross-section for an elliptically polarized wave).

Problem 2 (25 points):

Consider two particles, with electric charges q_1 and q_2 , and masses m_1 and m_2 , orbiting at non-relativistic speeds in each other's Coulomb fields. Show that if $q_1/m_1 = q_2/m_2$, then the dipole radiation vanishes.

Problem 3 (25 points):

The magnetic dipole field has exactly the same form as the electric dipole field, except that the electric dipole \vec{d} is replaced by the magnetic dipole \vec{M} . Here we consider a spinning neutron star that is slowing down due to magnetic dipole radiation. Let us assume that the neutron star is a uniform sphere, with mass M, radius R, spinning at angular velocity ω . Let us also assume that its magnetic field is a dipole, with a strength B at the magnetic pole. In general, the angle between the magnetic and rotation axes is θ , i.e. the dipole is rotating.

(a) Show that the magnitude of the magnetic dipole moment M, is $M = BR^3/2$, and find an expression for the power radiated by the magnetic dipole, in terms of B, R, ω , and θ . (Hint: compute the E field of a dipole – two charges separated by a small distance.)

(b) Find an expression for the time it takes for the neutron star to loose all of its rotational energy. What is this "spin-down" time for a typical neutron star (assume $M = 1 M_{\odot}$, $R = 10^{6}$ cm, $B = 10^{12}$ gauss, $\omega = 10^{3}$ s, and $\theta = \pi/2$).

Problem 4 (25 points):

Consider the semi-classical Bohr model of the hydrogen atom, with the electron in circular orbit around a proton, radiating continuously according to the Larmor formula.

(a) Starting from an orbit with the energy equal to the n = 2 level (i.e. the first excited quantum state), how long would it take for the electron to descend to the ground state ?

(b) Compare this with the actual quantum-mechanical lifetime (hint: you will have to look up the Einstein coefficient A_{21} for the Lyman α transition).