Astronomy GR6001: Problem Set \#1

Due in class on Monday, September 27, 2021

Problem 1 (15 points):

Astronomers often use a logarithmic frequency scale in their plots, since they are often interested in a range of frequencies extending over many orders of magnitude. In this case, for monochromatic quantities, such as F_{ν}, it is usually most convenient to plot the quantity νF_{ν}, rather than F_{ν}.
(a) Show that the units of νF_{ν} are the same as that of the total flux F.
(b) Show that if νF_{ν} is plotted against $\log \nu$, then equal areas under the plotted curve contribute equally to the total flux F.
(c) The quantity F_{λ}, denoting the flux per unit wavelength range, is often used as an alternative to F_{ν}. Show that $\nu F_{\nu}=\lambda F_{\lambda}$.

Problem 2 (25 points):

Show that the mean intensity, $J(r)$ at an arbitrary distance r away from a sphere of uniform surface brightness $I_{\nu}=B=$ constant is given by

$$
\begin{equation*}
J(r)=\frac{B}{2}\left[1-\sqrt{1-\left(\frac{R}{r}\right)^{2}}\right] \tag{1}
\end{equation*}
$$

Problem 3 (25 points):

Photons are produced in a uniform cloud of radius R at the rate Γ (photons per unit volume per unit time). Assume that the cloud is optically thin, i.e., neglect any absorption within the cloud (justified for hard enough X-ray photons in most real clouds).
(a) Find the specific number intensity I (photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$) at a distance r from the cloud, as a function of the impact parameter b (measured from the center of the cloud). Note that I is defined based on the number of photons (rather than energy, as in the case of the specific intensity).
(b) Find the number flux F (photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$) at a distance r from the cloud in two different ways. First, use a simple conservation law. Second, explicitly integrate the specific number intensity. Verify that you get the same answer either way.

Problem 4 (30 points):

A simple model for the late stages of a supernova shock is a thin spherical shell, centered on the site of the explosion. Assume that the shell has expanded to a radius R from the center, and has a width $\Delta R \ll R$. Assume further that the material filling this shell has a constant emission coefficent j_{ν} and is optically thin (no absorption). Show that the observed surface brightness of the shell along a ray passing a distance p from the center is approximately

$$
\begin{equation*}
I_{\nu}=\frac{2 j_{\nu} R \Delta R}{\sqrt{R^{2}-p^{2}}} \tag{2}
\end{equation*}
$$

for $p<R$ (and $I_{\nu}=0$ otherwise). Make a plot of I_{ν} vs p to demonstrate that the shell will appear brightest near $p \sim R$. Thus argue that the supernova shell will look like a "ring" on the sky. (Note: the above expression is inaccurate near $p \rightarrow R$ where it becomes singular. You need not compute corrections to the expression at $p \approx R$.)

Problem 5 (5 points):

Please rank the previous four problems overall on a scale of 1-5 for (a) difficulty, (b) length, and (c) level of math involved (or else feel free to provide feedback in some other format). You will receive five points just for answering!

