Supplementary Material for:

Absolute Doubly Differential Angular Sputtering Yields for 20 keV Kr⁺ on Polycrystalline Cu

Caixia Bu^{1*}, Liam S. Morrissey^{2,3*}, Benjamin C. Bostick⁴, Matthew H. Burger⁵, Kyle P. Bowen¹, Steven N. Chillrud⁴, Deborah L. Domingue⁶, Catherine A. Dukes⁷, Denton S. Ebel⁸, George E. Harlow⁸, Pierre-Michel Hillenbrand⁹, Dmitry A. Ivanov¹, Rosemary M. Killen², James M. Ross⁴, Daniel Schury¹, Orenthal J. Tucker², Xavier Urbain¹⁰, Ruitian Zhang¹, and Daniel W. Savin^{1*}. ¹Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA

²NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

³Faculty of Engineering and Applied Science, Memorial University, NL, Canada A1B 3X7

⁴Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA

⁵Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA

⁶Planetary Science Institute, Tucson, AZ 85719, USA

⁷University of Virginia, Charlottesville, VA 22904, USA

⁸American Museum of Natural History, New York, NY 10024, USA

⁹Atomphysik, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
¹⁰Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

*Corresponding Authors: <u>cb3619@columbia.edu</u>; <u>lsm088@mun.ca</u>; <u>dws26@columbia.edu</u>.

Table S1 – Polar θ_s and azimuthal ϕ_s angle for the center of each collector, together with the measured mass gain Δm , uncertainty in the measured mass gain $\sigma_{\Delta m}$, absolute measured and SDTrimSP doubly differential sputtering yield $(dY/d\Omega)_M$ and $(dY/d\Omega)_S$, respectively, and fractional difference between the measured and simulated yield $\Delta(dY/d\Omega) = [(dY/d\Omega)_M - (dY/d\Omega)_S)] / (dY/d\Omega)_S$.

$\theta_{\rm s}$	$\phi_{ m s}$	Δm	$\sigma_{\Delta m}$	$(dY/d\Omega)_{\rm M}$	$(dY/d\Omega)_{\rm S}$	$\Delta(\mathrm{d}Y/\mathrm{d}\Omega)$
(degree)	(degree)	(µg)	(µg)	(atoms/ion/sr)	(atoms/ion/sr)	
0.0	0.0	10.12	0.13	9.65	9.43	0.023
15.0	0.0	9.41	0.20	8.98	9.03	-0.006
15.0	60.0	10.03	0.25	9.56	8.75	0.093
15.0	120.0	9.05	0.41	8.63	8.54	0.010
15.0	180.0	8.63	0.17	8.23	8.39	-0.019
30.0	0.0	7.66	0.12	7.30	7.48	-0.023
30.0	28.4	7.76	0.08	7.40	7.39	0.001
30.0	56.8	8.41	0.18	8.02	7.19	0.116
30.0	85.2	8.44	0.07	8.05	6.99	0.151
30.0	113.6	7.60	0.11	7.25	6.84	0.060
30.0	142.0	6.73	0.13	6.42	6.77	-0.052
45.0	0.0	5.61	0.08	5.35	5.44	-0.017

45.0	20.5	5.86	0.07	5.59	5.45	0.025
45.0	41.0	6.18	0.11	5.90	5.27	0.119
45.0	61.5	6.23	0.07	5.94	5.20	0.141
45.0	82.0	6.90	0.09	6.58	5.01	0.314
45.0	102.5	6.39	0.07	6.10	4.98	0.224
45.0	123.0	5.30	0.07	5.05	4.71	0.072
45.0	143.5	5.13	0.11	4.89	4.57	0.071
60.0	0.0	2.77	0.12	2.64	3.17	-0.168
60.0	17.0	2.85	0.12	2.72	3.06	-0.111
60.0	34.0	3.10	0.06	2.95	3.19	-0.075
60.0	51.0	2.98	0.76	2.84	2.97	-0.044
60.0	68.0	3.62	0.13	3.45	2.87	0.202
60.0	85.0	3.96	0.11	3.77	2.69	0.402
60.0	102.0	3.74	0.10	3.57	2.77	0.285
60.0	119.0	3.49	0.11	3.32	2.58	0.286
60.0	136.0	3.50	0.04	3.33	2.52	0.321
60.0	153.0	3.77	0.08	3.59	2.51	0.431

75.0	0.0	0.01	0.62	0.01	1.21	-0.990
75.0	14.5	0.40	0.16	0.38	1.20	-0.680
75.0	29.0	0.88	0.12	0.84	1.24	-0.320
75.0	43.5	0.82	0.06	0.78	1.20	-0.349
75.0	58.0	1.22	0.19	1.16	1.18	-0.021
75.0	72.5	1.86	0.10	1.77	1.15	0.537
75.0	87.0	1.98	0.07	1.89	1.08	0.741
75.0	101.5	1.54	0.09	1.46	1.00	0.461
75.0	116.0	1.71	0.06	1.63	1.09	0.494
75.0	130.5	1.59	0.08	1.52	0.98	0.545
75.0	145.0	1.74	0.09	1.66	0.97	0.717
75.0	159.5	1.88	0.08	1.79	0.99	0.813