Simultaneous measurement of photorecombination and electron-impact ionization of Fe$^{14+}$ ions

2015 J. Phys.: Conf. Ser. 635 052002
(http://iopscience.iop.org/1742-6596/635/5/052002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.59.168.116
This content was downloaded on 02/03/2017 at 14:32

Please note that terms and conditions apply.

You may also be interested in:

Measurement and calculation of L-shell transitions in M-shell iron ions
P Beiersdorfer, J K Lepson, F Diaz et al.

Spectroscopic study of impurities in the JFT-2 tokamak
M. Shiho, S. Konoshima, A. Funahashi et al.

Large-scale calculation of dielectronic recombination parameters for Mg-like Fe
I Murakami, T Kato, D Kato et al.

Dielectronic Recombination of Fe XV
D. V. Luki, M. Schnell, D. W. Savin et al.
Simultaneous measurement of photorecombination and electron-impact ionization of Fe$^{14+}$ ions

D. Bernhardt1, A. Becker2, M. Grieser2, M. Hahn3, C. Krantz2, M. Lestinsky4, O. Novotny2,3, R. Repnow2, K. Spruck1,2, D. W. Savin3, A. Wolf2, A. Müller1, and S. Schippers4

1 Institut für Atom- und Molekülphysik, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
2 Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
3 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
4 GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Synopsis
Cross sections for photorecombination (PR) and for electron-impact ionization (EII) of astrophysically relevant Mg-like Fe$^{14+}$ ions have been measured by employing the electron-ion merged-beams technique at the Heidelberg heavy-ion storage ring TSR. Rate coefficients for PR and EII of Fe$^{14+}$ ions in a plasma are derived from the measurements. Both agree with the most recent theoretical results.

Cross sections for photorecombination (PR) and for electron-impact ionization (EII) of Mg-like Fe$^{14+}$ ions have been measured [1] (Fig. 1) by employing the electron-ion merged-beams technique at the Heidelberg heavy-ion storage ring TSR. The present findings together with our previous results for other Fe-M-shell and Fe-L-shell ions [2,3] (and references therein) are relevant for the modelling of the charge balance in photoionized plasmas (PP) and collisionally ionized plasmas (CP). Moreover, the present results benchmark the most recent theoretical calculations for PR [4] and EII [5] of Fe$^{14+}$. In the relevant temperature ranges (PP and CP ranges for PR; CP range for EII) both theoretical results agree with the experimentally derived rate coefficients within the systematic experimental uncertainty.

The simultaneous measurement of PR and EII under the same experimental conditions provides a unique opportunity for a comparison of recombination and ionization resonances [6]. The present comparison between PR and EII (Fig. 1) shows that corresponding recombination and ionization resonances are rare. Only the $(2p^53s^23d\ ^5D_1)\ nl$ and $(2p^53s^23d\ ^1P_1)\ nl$ intermediate levels contribute to both PR and EII. Ionization resonances beyond the respective series limits at 794.95 and 807.29 eV are associated with higher $2p\rightarrow nl'l'$ core excitations. The corresponding highly-excited intermediate levels strongly autoionize and therefore do not contribute significantly to PR.

References

Figure 1. Measured cross sections [1] for PR (top) and EII (bottom) of Fe$^{14+}(3s^2)$. The resonances in both spectra are due to resonant dielectronic capture into $2p^53s^23d nl$ doubly excited intermediate levels. Subsequent decay of these levels via radiative transitions or via double Auger decay leads to net recombination or net ionization, respectively. The ionization resonances appear on top of a continuous background signal due to direct ionization and excitation-autoionization.