GENETIC SYNTHESIS of BROADBAND,
LOW-FREQUENCY ANTENNAS,
with Applications to
Radio Astronomy

by

NEIL ZIMMERMANN

A thesis submitted in partial fulfillment
of the requirements of the degree of
MASTER OF ENGINEERING

MAY 2006

PROFESSOR TOBY CUMBERBATCH
Advisor
THE COOPER UNION
FOR THE
ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis Advisor and has received approval. It was submitted to the Dean of the School of Engineering and the full Faculty, and was approved as partial fulfillment of the requirements of the degree of Master of Engineering.

__
Dean, School of Engineering — Date

__
Prof. Cumberbatch — Date
Candidate’s Thesis Advisor
Acknowledgements

Of all the outstanding faculty at Cooper Union with whom I have had the fortune of studying, my advisor, Professor Toby Cumberbatch, has had an incomparable impact on my development. During my tuition as an undergraduate, he brought the best out of my classmates and I, challenging us with far more than circuit problems. He continues to set an example of sincere dedication to humanitarian ideals that is all too rare in academia.

The inspiration for this thesis comes from my internship in the summer of 2003, working at the Haystack Observatory with Brian Corey and Eric Kratzenberg. In particular, Eric encouraged me to continue exploring new antenna designs, and his guidance over the course of this project was invaluable.

Besides my fellow Cooper students, I will miss the companionship of the staff, especially Jeff Hakner and Glenn Gross. Thanks for keeping me company during those late nights in the lab.

Finally, I am greatly indebted to the free software community, which provided me with several tools that helped me carry out this research. Special thanks go to the radio hobbyists who contributed to the antenna simulation and data extraction programs I used: Neoklis Kyriazis, Jeroen Vreeken, and Pieter-Tjerk de Boer.
Abstract

The next generation of low-frequency radio astronomy interferometers will place great demands on the bandwidths of wire antennas. To explore novel antenna designs that meet this challenge, a genetic algorithm has been developed which optimizes the geometry of a given wire template with respect to cascaded noise temperature over the frequency band of operation. The application of this method to the binary tree dipole results in a novel antenna with promising noise matching characteristics.
Contents

1 Statement of Problem 1
 1.1 Low-Frequency Radio Astronomy ... 1
 1.2 The Epoch of Reionization .. 4
 1.3 Low-Frequency Interferometers ... 9
 1.4 The Role of the Dipole Interferometer Element 14

2 Broadband Antennas 17
 2.1 Antenna Basics ... 17
 2.2 The Bow-tie: A Traditional Broadband Dipole 21
 2.3 Fractal Geometry ... 29
 2.4 The Electrical Properties of Fractal Conductors 31
 2.5 The Tree Fractal Dipole ... 34

3 The Genetic Antenna Optimizer 37
 3.1 Genetic Algorithms .. 37
 3.2 Overview of the Genetic Algorithm ... 39
 3.3 Parallelization ... 42
 3.4 Initialization ... 44
 3.5 Main Loop ... 46
 3.6 Implementation of the Binary Tree Antenna Species 53

4 Results and Analysis 56
4.1 Optimizer Parameters ... 56
4.2 Bow-tie Dipole Solution .. 59
4.3 Binary Tree Dipole Solution 61
4.4 Conclusions .. 71

Bibliography .. 73
List of Figures

1.1 Simulation of the evolution of emission features during EoR. From upper left to lower right, the redshift is varied from 12.1 to 7.6. [1] 8

1.2 Major contributions to the power spectrum of the EoR sky. [2] 9

1.3 New observatories planned to probe the EoR. [3] 13

1.4 Layout of the MWA Low-Frequency Demonstrator. [4] 14

1.5 MWA Low-Frequency Demonstrator antenna tile, situated in Mileura, Australia. [5] 14

1.6 MWA LFD Dual-Polarization Dipole. [4] 16

2.1 Basic dipole antenna. 19

2.2 Impedance response of a 1 meter dipole. 20

2.3 Model of the LFD’s bow-tie dipole. 22

2.4 Impedance Comparison between the LFD bow-tie dipole and the straight 1 m dipole. 26

2.5 Reflection coefficient plots. Top panel is a comparison between a bow-tie and a straight dipole, and the bottom panel is just the bow-tie. 27

2.6 Theoretical system temperature performance comparison between thin wire bow-tie and straight dipole. 28

2.7 Koch snowflake. [6] 29

2.8 Gianvittorio Binary Tree Dipole. 35

2.9 $|\Gamma|$ Comparison between a Gianvittorio binary tree and a straight dipole, tuned to the same resonance. 36

3.1 Overall flowchart of the antenna optimizer. 41
3.2 Recombination algorithm flow chart. ... 49
3.3 Mutation algorithm flow chart. ... 51
3.4 Example of an invalid mutation. ... 53
3.5 The encoding of a third-order binary tree dipole. 54

4.1 Bow-tie genes. ... 59
4.2 Bow-tie champion. ... 60
4.3 T_{LNA}/T_{sys} comparison between full and scaled-down bow-tie. 61
4.4 Binary tree champion. ... 62
4.5 T_{LNA}/T_{sys} comparison between binary tree champion and bow-tie. . 63
4.6 Impedance response comparison between binary tree champion and bow-tie. . 67
4.7 Close-up view of an outer branch tip capacitor. 68
4.8 Reactance of binary tree champion with modified branch tip capacitor. . 68
4.9 Simplified binary tree champion with connected inner branch tips. 69
4.10 Normalized E-plane and H-plane power patterns at 150 MHz. 69
4.11 Normalized E-plane and H-plane power patterns at 250 MHz. 70
Chapter 1

Statement of Problem

1.1 Low-Frequency Radio Astronomy

The range of wavelengths of light to which the human eye is tuned is a miniscule fraction of the complete spectrum of electromagnetic radiation generated by the cosmos. The visible region spans only one of over 50 octaves in frequency comprising the electromagnetic spectrum. Our handicap in this sense has been compared to taking a recording of a symphony orchestra and removing all octaves of sound but middle C [7].

Despite the limited window of light with which natural selection left us, mankind relied on it for millennia to gather knowledge about the universe beyond our physical reach. Traditional optical telescopes, while vastly improving the resolution and sensitivity of our view, did not increase the width of this window. It was not until the 20th century, after the advent of radio communication technology, that we began to detect electromagnetic radiation from outside the visible spectrum. We have since created instruments to act as our eyes in other regimes; today light is captured and studied at radio, submillimeter, infrared, ultraviolet, x-ray, and gamma-ray wavelengths. Without fail, whenever a new region of the spectrum is opened up, major astrophysical discoveries are made. The cosmic microwave background, neutron stars, black holes, synchrotron nebulae, x-ray binaries, protostars, active galactic nuclei, and gamma-ray bursts would each remain either theoretical entities or unimagined were it not for the expansion of astronomy into non-visible wavelengths during the second
half of the last century [8].

Despite radio wavelengths being our first glimpse at non-visible light, several octaves of the radio spectrum continue to elude astronomers. Efforts to observe at the lower frequency end of the radio regime — corresponding to frequencies below around 300 million cycles per second (MHz) or equivalently, wavelengths greater than 1 meter — are frustrated by an alliance of technical and natural obstacles. Therefore, astronomers first built and perfected radio telescopes to work at higher frequencies, typically employing a single large reflector to focus radiation. However, they achieved higher sensitivity and resolution by combining the signals from many such telescopes in phase. During the 1960s, interferometers composed of large reflectors spread out over several kilometers were built. The most famous of these, the Very Large Array (VLA) in New Mexico, was completed in 1980. The VLA is still used today with spectacular success at frequencies up to 43 GHz [9]. In more recent years, astronomers have created telescopes for yet higher frequencies, filling in the gap between radio and infrared.

The VLA is outfitted with receivers that tune to as low as 74 MHz, but performance here is unfavorable for objects demanding high angular resolution. The reason is concisely expressed by the Rayleigh criterion:

\[\sin \theta = \frac{1.22 \lambda}{D} \]

(1.1)

where \(\theta \) is the minimum separation between features that can be resolved in an image given a circular aperture of diameter \(D \) and observed wavelength \(\lambda \) [10]. If you tune your receiver to larger and larger wavelengths using the same radio dish, the angular size of the details you can resolve increases in direct proportion to \(\lambda \). For a single filled aperture antenna, the angle \(\theta \) in the Rayleigh criterion is essentially referred to as the beam size or beamwidth of a given radio telescope. For an interferometer, the same limit applies, except in this case \(D \) is not the diameter of the aperture but rather the maximum baseline between antennas. If we compare the beam size of the VLA at various frequencies, we see that in its widest configuration (maximum \(D \)), the synthesized beamwidth increases from 1.4 arcseconds at 20 cm (1400 MHz) to 24 arcseconds at 400 cm (74 MHz).
However, diffraction limitation is not a major concern for certain observations, such as the epoch of reionization observations which will be introduced later. Yet there is another problem facing all astronomers who wish to form images at 74 MHz with a telescope like the VLA. At frequencies this low, the ionosphere plays havoc with the paths of incident radio waves. Air molecules, ionized by solar radiation, effectively produce a plasma at high altitudes (90 km to 500 km). The plasma frequency of an ionized medium is given by

$$\nu_0 = \frac{e}{2\pi} \sqrt{\frac{n_e}{\epsilon_0 m_e}} \quad (1.2)$$

where e is the electron charge, n_e is the electron density, ϵ_0 is the permittivity in a vacuum, and m_e is the electron mass [11]. An incident wave below the plasma frequency is totally reflected by the medium. The structure of the ionosphere is complicated by the fact that the electron density varies with both geographic position and altitude on multiple time scales. However, for a typical electron density of 10^{12} m^{-3} equation 1.2 gives a plasma frequency of about 9 MHz. Therefore, radio astronomy below a few MHz can never be undertaken from the surface of the Earth. The few satellites that have been equipped to observe below 1 MHz have only done so with single wire antennas, consequently providing only coarse sampling of the sky’s brightest features [12]. Although 74 MHz is far above the plasma frequency of the ionosphere, there are scintillation effects that extend well above the plasma frequency, caused by changes in the index of refraction over a light wave’s path through the ionosphere. Since the magnitude of the phase shifts due to the ionosphere is proportional to λ^2, the longer wavelength signals are most severely distorted. However, the scintillation effects that have slow-varying time components can be largely overcome using new wide field self-calibration techniques [3], [13].

We mentioned above that certain observations do not need higher resolution than interferometers like the VLA can offer. So, putting resolution needs aside, and assuming ionosphere distortion can be calibrated out, what is wrong with our current interferometers for low-frequency radio astronomy? The main limitation is sensitivity, or how faint an object we can see. The most interesting science that we predict will come out of low-frequency radio astronomy requires an order of magnitude greater telescope collecting area than even our
largest telescopes can offer now. In the next section we’ll show where this need arises.

1.2 The Epoch of Reionization

The most widely accepted model of the universe claims that as matter cooled after the big bang due to expansion, the electrons and protons recombined to form neutral hydrogen (see [14] and [15]). This happened when the universe was roughly \(\frac{1}{1000} \)th of its current size. After this event, collisions between photons and electrons became far more scarce, so much so that most of the photons continued travelling without interacting with any atoms. We see these photons today as the well known cosmic microwave background (CMB), the relic of a turning point in the universe’s history. The spectrum of the CMB is a near perfect blackbody, telling us the exact temperature of the hot particle soup at the point where electrons and photons fell out of thermal equilibrium. The “microwave” in the name is slightly misleading; the spectrum does peak at a wavelength of 1.9 mm, but like a true blackbody, the power is spread out over all frequencies. What followed the recombination is known as the cosmic dark ages — the universe was relatively homogeneous, without any of the complex structure that we see today, and the only light was the blackbody radiation that we now know as the CMB.

Eventually, the newly formed hydrogen atoms, gathered by the force of gravity, formed the first luminous structures: population III stars and quasars [3]. Stars behave as hot black-bodies, and they output a continuum of light peaking in or near the visible wavelengths and extending into the ultraviolet (UV) range. Quasars likewise provide a continuum spectrum extending into UV frequencies. Only UV photons have enough energy to ionize hydrogen (13.6 eV, corresponding to a wavelength of 912 Å). Before these luminous bodies formed, there were no photoionizing sources since the temperature of the blackbody spectrum of the cosmic background (\(\sim 3000 \) K) was insufficient to provide enough UV light. The process by which the first luminous structures ionized the surrounding hydrogen is called the epoch of reionization because it caused the transition from a mostly neutral universe to a mostly ionized one. To this day the universe remains mostly ionized. The ionized hydrogen is in be-
tween stars, gathered in hot clouds throughout the Milky Way and in other galaxies in what is collectively known as the interstellar medium, and it fills the space in between galaxies with a low density intergalactic medium.

As they travel over distances on the scale of galaxy separations, light waves stretch in direct proportion with the expansion of the universe. Therefore, if the light that makes up the CMB was emitted when the universe was \(\frac{1}{1000} \) the size it is now, then the wavelength of each photon we see today was originally \(\frac{1}{1000} \) the size it is now. Redshift, \(z \), is a unitless measure of the degree to which light waves have stretched since they were emitted. Astronomers use \(z \) to mark how far back they are looking in time, and it is defined as follows.

Let \(t_e \) be the time of emission of a light wave. Suppose that at time \(t_e \) the universe was a fraction of its current size given by \(a, a \leq 1 \). Then redshift is defined such that \(z + 1 = \frac{1}{a} \).

Therefore, light from our “neighborhood” \((a = 1)\) — the neighboring Andromeda Galaxy, for example — has a redshift \(z \) of zero. Higher \(z \) means further back in time.

The most compelling motivation for the push to low radio frequencies is the desire to probe the cosmos during the epoch of reionization (EoR). The signal we can expect to use is an indirect trace of the fraction of neutral hydrogen as a function of \(z \). The total energy of a hydrogen atom is greater when the magnetic moment of the electron is parallel to that of the proton. Any ground state electron with such a parallel magnetic moment has a finite but extremely small probability of flipping its quantum spin, thereby reversing the magnetic moment. Since switching to an anti-parallel magnetic moment decreases the total energy of the atom, it emits a photon at a wavelength of 21 cm. Given any one neutral hydrogen atom, the expectation time to see this very rare hyperfine transition is 11 million years. Fortunately, in many circumstances the column density of hydrogen in a given direction from the observer is enormous enough that the emission associated with this transition is detectable. Radio astronomers have observed 21 cm “spin-flip” radiation for over 50 years, in the Milky Way and in surrounding galaxies [16].

The EoR corresponds to \(z \simeq 10 \), and therefore 21 cm emission from this period will appear at a wavelength of \((1 + z)21 \text{ cm} \simeq 2 \text{ m}\), or a frequency of around 150 MHz. The
Redshift = \(z \)

<table>
<thead>
<tr>
<th>Light Travel Time (Gyr)</th>
<th>13.5</th>
<th>12.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (m)</td>
<td>4.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>70</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 1.1: Hydrogen line wavelengths for EoR. Light travel times are based on a 13.7 Gyr-old flat universe [17].

The time span of reionization is debatable but popular estimates state the most critical range as \(z = 20 \) to \(z = 6 \) [3]. This means that in order to map the entire reionization history, a wide range of redshifts, and therefore wavelengths, needs to be observed. The corresponding hydrogen line wavelengths are shown in Table 1.1.

In the context of radio astronomy, we use brightness temperature to refer to the intensity of radiation at a given point in the sky. To understand why one would ever use temperature to describe the intensity of light, consider the blackbody spectrum in the Rayleigh-Jeans limit (\(h\nu \ll k_B T \)),

\[
B = \frac{2k_B T \nu^2}{c^2} = \frac{2k_B T}{\lambda^2}
\]

Here \(B \) is the brightness or intensity in SI units that describes the incident power per unit of receiving area due to radiation from a unit of subtended angular area of the radiating body per unit frequency (Watts \(\text{m}^{-2} \text{ rad}^{-2} \text{ Hz}^{-1} \)). \(k_B \) is Boltzmann’s constant, \(T \) is the temperature of the body, and \(c \) is the speed of light [18]. Using temperature to describe features in the sky is convenient because if the object of interest radiates like a blackbody, then one can explain its spectrum with just one parameter — temperature — instead of brightness at each frequency. For example, if you know that the CMB has a sky temperature of \(\sim 3 \) K, then you know the intensity you would observe at every frequency, assuming it is a perfect blackbody. The Rayleigh-Jeans approximation is reasonably true for all radio frequencies and certainly in the low-frequency regime.

Theoretical models claim that for \(z < 20 \), absorption of the CMB background radiation
at 21 cm by neutral hydrogen is negligible compared to the 21 cm emission [1]. Therefore the 21 cm signal from neutral hydrogen during the EoR will be observed as a brightness superimposed on the CMB continuum. An approximate formula for this brightness temperature addition to the CMB, in units of mK, is given by

$$\Delta T_B \simeq 7(1 + \delta) x_{HI} (1 + z)^2.$$ \hspace{1cm} (1.4)

Here δ is the relative overdensity of a region, x_{HI} is the fraction of neutral hydrogen, and z is redshift [3]. Cosmological computer simulations have been used to estimate the statistical properties of the distribution of matter during the EoR. Figure 1.1 is one example of this, demonstrating how a small section of the sky would appear at nine different wavelengths (or redshifts), provided the telescope had unlimited resolution, sensitivity, and no foreground confusion. Direct imaging of even the brightest of these features requires more sensitivity than all but one observatory in the planning stage can offer (the Square Kilometer Array) [1]. However, what we can hope to determine within ten years is the angular power spectrum of these brightness fluctuations.

Figure 1.2 shows estimates of two major contributions to the power spectrum of the EoR sky at a redshift of $z = 10$, as plotted by Miguel Morales and collaborators. The abscissa is given in units of antenna baseline length. In the field of radio interferometry it is conventional to translate the wavenumbers of fluctuations in the sky into the correspondingly matched baselines. The essential relationship to understand is that the lower baselines correspond to wider scale structure and higher baselines correspond to smaller angular scale. Another important thing to understand about this plot is that the relative amplitudes of the curves are extremely uncertain; only their shapes are particularly meaningful for discussion. The dashed curve indicates how matter should be distributed as a function of angular scale at this particular epoch, based on a favored cosmological model. We expect the observed power spectrum to be similar to this curve, with perturbations determined by the reionization history. The solid line relates to one of those deviations; it is the theoretical contribution of Stromgren spheres to the power spectrum. A Stromgren sphere is a region where a luminous body such as a star or a quasar has ionized the surrounding hydrogen with UV
Figure 1.1: Simulation of the evolution of emission features during EoR. From upper left to lower right, the redshift is varied from 12.1 to 7.6. [1]

photons. Stromgren spheres evolve with time — as the ionizing radiation reaches more neutral hydrogen, the region grows. As the Stromgren spheres grow, their overall power spectrum should be shifted to wider angular scales. Hence the arrows on its curve, indicating how the shape would change with decreasing redshift. Measuring the power spectrum of the EoR sky as function of redshift, and thereby determining the history of reionization, is a major goal for the first round of EoR observatories.
1.3 Low-Frequency Interferometers

The received power per unit bandwidth (Watts Hz$^{-1}$) of a lossless antenna can be expressed as

$$w = \frac{1}{2} A_e \int B(\theta, \phi) P_n(\theta, \phi) d\Omega = k_B T_A$$

(1.5)

where A_e is the effective aperture (m2), $B(\theta, \phi)$ is the brightness of the sky as a function of angle (Watts m$^{-2}$ Hz$^{-2}$ rad$^{-2}$), and $P_n(\theta, \phi)$ is the normalized power pattern of the antenna.

The received spectral power also equals $k_B T_A$, where k_B is Boltzmann’s constant and T_A is the antenna temperature. This last relation is due to Nyquist’s treatise on electrical conduction, which states that the spectral power (Watts Hz$^{-1}$) from a resistor at temperature T is given by $k_B T$ [19]. The power available from the terminals of a resistor at temperature T is equal to that available from the terminals of a lossless antenna completely surrounded by a sky at brightness temperature T [18].

Figure 1.2: Major contributions to the power spectrum of the EoR sky. [2]
Combining equations 1.5 and 1.3, the expression for brightness in terms of temperature, results in

\[T_A = \frac{A_e}{\lambda^2} \int T_s(\theta, \phi) P_n(\theta, \phi) d\Omega \]

(1.6)

Suppose the antenna is placed in free space, surrounded in all directions by an empty sky except for a single source of brightness \(T_s \) subtending a solid angle of \(\Omega_s \). If the main beam of the antenna is centered on the source, and the source extent is small enough that \(P_n(\theta, \phi) \simeq 1 \) across the source, then

\[T_A \simeq \frac{A_e T_s \Omega_s}{\lambda^2} \]

(1.7)

The sensitivity of a radio telescope is limited by the noise introduced by the conductivity losses and impedance mismatch between the antenna and the receiver, as well as the noise added to the signal by the receiver. The equivalent noise temperature, defined by the summation of these effects and the antenna temperature, is conventionally denoted by \(T_{sys} \). Given a length of time of observation, the minimum antenna temperature that can be distinguished from system noise is given by

\[\Delta T_{A_{\text{min}}} = \frac{K_s T_{sys}}{\sqrt{\Delta \nu t}} \]

(1.8)

where \(K_s \) is a constant of order unity depending on the receiver mode, \(T_{sys} \) is the system temperature (K), \(\Delta \nu t \) is the predetection bandwidth multiplied by the total integration time [18].

The minimum detectable antenna temperature is not as interesting as the minimum detectable source temperature. Combining equations 1.8 and 1.7, it is apparent that the minimum detectable source temperature is

\[T_{s_{\text{min}}} = \frac{\lambda^2 K_s T_{sys}}{A_e \Omega_s \sqrt{\Delta \nu t}} \]

(1.9)

This expression is true not only for a single antenna radio telescope but also for an interferometer. In the latter case, \(A_e \) is the sum of the collecting areas of the array components. From 1.9 it is clear that the minimum temperature of a detectable source is inversely proportional to collecting area of the array. Unfortunately, the financial budget of a project typically limits \(A_e \) more than any other characteristic of the instrument.
T_{sys} has a lower limit set by foreground noise caused by synchrotron emission in our own galaxy. The strength of the noise varies strongly with frequency and direction; it is brightest towards the center of the galaxy, and it increases steeply with wavelength. The synchrotron foreground brightness temperature can be approximated by

$$T_{\text{sky}} \simeq (60 \pm 20)\lambda^{2.55} \text{ K}$$

for a region of sky away from the galactic plane [20]. Because of the foreground, the antenna temperature, and therefore the system temperature, will always be on the order of 100 K for low-frequency observations. This is unlike the case at higher frequencies where the galactic synchrotron foreground is negligible. The engineer of an instrument operating at GHz frequencies has the luxury of being able to reduce T_{sys} by an amount only limited by state-of-the-art of microwave electronics in order compensate for small A_e. Placing a high-end receiver on a low-frequency telescope, on the other hand, does not make sense when T_{sys} will be large no matter what.

The need to produce a large aperture at low expense and the natural limitations on T_{sys} lead to some defining features of the new low-frequency interferometers. One trait is that instead of using parabolic reflectors like the VLA, they will use about 10^4 wire dipole antennas. What are the tradeoffs between making an interferometer out of dipoles versus paraboloids? A half-wavelength dipole provides a maximum effective aperture of $0.13\lambda^2$ [21]. Therefore, whether or not it is more cost-effective to divide the aperture into dipoles versus paraboloids depends on the wavelength of interest. For example, to construct an interferometer out of dipoles with a total aperture around that of the VLA ($\sim 10^4$ m2) optimized for a wavelength of 10 cm requires $\frac{10^4}{0.13(0.1)^2} = 8 \times 10^6$ dipoles. At that point, the receiver for each antenna and the associated networking would make it more expensive than approaching the problem with 30 parabolic reflectors, each on the order of 20 m in diameter. However, at wavelengths on the order of one meter this is no longer the case; an array containing 10,000 dipoles is feasible and several such projects are well underway.

The main disadvantage of a dipole interferometer compared to a paraboloid interferometer is that it can never have the same wavelength versatility. The VLA is a prime example
of this, having the capability to observe over 9 octaves. This is because a paraboloid’s useful
frequency range is limited only by the surface precision of the reflector and the availability
of appropriate feeds and receivers. On the other hand, a dipole can only be operated up to a
certain frequency before the main beam becomes narrow and the entire power pattern shows
multiple lobes. Furthermore, the effective aperture of a dipole is proportional to the square
of the wavelength. However, the scientific objectives of an interferometer dedicated to low
frequencies are compelling enough to justify this limitation. The areas of research possible
with a low-frequency interferometer extend beyond the cosmology example highlighted in
this chapter, and include extragalactic surveys, Milky Way surveys, galactic transient phe-
nomena, high-energy cosmic rays, pulsars, extrasolar planet detection, solar physics, and
geophysics [22].

The functional advantages of a dipole interferometer over a paraboloid interferometer
are considerable. One benefit is that mechanical steering can replaced by signal processing.
Parabolic antennas have inherently narrow beams that must be physically steered to the
target. Dipole antennas, on the other hand, have wide beams, and pointing can be accom-
plished by applying the appropriate phases to the individual signals in either hardware or
software. The wide beam of a dipole offers the ability to image more of the sky at once than
a conventional paraboloid interferometer could allow. Having a large field of view vastly
improves the efficiency of observing campaigns that depend on surveying large areas of the
sky, like probing the EoR.

A second major advantage of an array composed of many dipoles as opposed to a rela-
tively small number of paraboloids is that the apertures can be distributed more smoothly.
The purpose of interferometry is to synthesize one aperture much greater than that of any
individual element. The synthesized beam of an interferometer is the Fourier transform of
the spatial sampling of the area over which the antennas are placed. As the area of the array
is increasingly filled, the better it approximates a true aperture, and the lower the unwanted
sidelobes are in the beam pattern.

The table in figure 1.3 is extracted from a recent review article on new low-frequency
interferometers. It indicates the specifications of the projects underway. Two such instruments that are far into their testing stages are the Low-Frequency Array (LOFAR) and the Mileura Wide-Field Array Low-Frequency Demonstrator (MWA LFD). The LFD, situated in Mileura, a practically uninhabited region of western Australia, uses an array of dipole antennas to observe 80 – 300 MHz. The MIT Haystack Observatory, the Harvard-Smithsonian Center for Astrophysics, and the Australia Telescope National Facility are responsible for building the MWA. ASTRON (the Netherlands Foundation for Research in Astronomy) is building LOFAR in the Netherlands. LOFAR, the more ambitious of the two, uses two sets of dipoles; one for 30 – 80 MHz and one for 115 – 240 MHz.

Upon completion, there will be 16,000 dipoles in the LFD, placed in 500 groups of 32. Of the 32 in each tile, half are oriented to receive one linear polarization while the other half are oriented to receive the orthogonal polarization. The signals from the 32 dipoles are hardware-processed on the spot to form a single antenna beam; the result is software-correlated with the other 499 antenna tiles at a central computing station. At 150 MHz, the combined collecting area of the 16,000 dipoles is about 8,000 m². In the future, the Haystack Observatory intends to expand the aperture of the LFD by an order of magnitude (hence the “demonstrator” in the name) [3]. Figure 1.4 illustrates the hierarchy of the LFD layout, and Figure 1.5 is a photo of one of the first LFD tiles set up on-site.

Figure 1.3: New observatories planned to probe the EoR. [3]
1.4 The Role of the Dipole Interferometer Element

The shape of each dipole in the LFD is a *bow-tie*, as shown in Figure 1.6. In the next chapter we will examine the motivation behind this design. Here we will only treat the antenna as a two terminal device with a frequency dependent impedance. From this vantage point we
can address the impact of the dipole’s frequency response on the sensitivity of the overall radio telescope.

The system temperature, T_{sys}, as introduced before, is the sum of the antenna temperature and the noise temperature added to the signal by all of the devices and connections in between the antenna and the point of data acquisition. In a traditional radio telescope system, the antenna is followed by a low noise amplifier (LNA), which is then followed by a mixer [23]. Neglecting noise due to ohmic losses in transmission lines and noise contributions after the amplifier, we have

$$T_{sys} = T_A + T_{LNA}. \quad (1.11)$$

If only the sky is within the main beam of the antenna and sidelobes are negligible, then it is fair to make the approximation that $T_A \simeq T_{sky}$. In linear two-port theory the noise figure provides a way of describing the degree to which a two-port network causes a detriment to the signal-to-noise ratio:

$$F = \frac{S_i/N_i}{S_o/N_o} \geq 1. \quad (1.12)$$

Here S_i/N_i and S_o/N_o are the signal-to-noise ratios at the input and output of the device, respectively. The noise figure is related to the noise temperature of a device by

$$F = 1 + \frac{T_e}{T_0} \quad (1.13)$$

where T_e is the equivalent noise temperature of the device and T_0 is 290 K [24]. The expression for the noise figure of a two-port amplifier at the feed of an antenna is given by

$$F = F_{min} + \frac{4R_N}{Z_0} \left(\frac{\left| \Gamma_A - \Gamma_{opt} \right|^2}{1 - |\Gamma_A|^2} \right) \frac{1 + \Gamma_{opt}^2}{1 + \left| \Gamma_{opt} \right|^2} \quad (1.14)$$

where Γ_A is the reflection coefficient of the antenna, F_{min} is noise figure under the condition $\Gamma_A = \Gamma_{opt}$, and R_N is the equivalent noise resistance of the transistor [25]. Combining equations 1.10, 1.11, 1.13, and 1.14, the system temperature can now be roughly expressed in terms of the reflection coefficient of the dipole element:

$$T_{sys} \simeq T_{sky} + T_{LNA} \simeq 60\lambda^{2.55} + 290 \left(F_{min} + \frac{4R_N}{Z_0} \left(\frac{\left| \Gamma_A - \Gamma_{opt} \right|^2}{1 - |\Gamma_A|^2} \right) \frac{1 + \Gamma_{opt}^2}{1 + \left| \Gamma_{opt} \right|^2} - 1 \right) \text{K}. \quad (1.15)$$
Since $0 \leq |\Gamma_A| \leq 1$, T_{sys} in equation 1.15 increases monotonically with $|\Gamma_A - \Gamma_{opt}|$. Therefore, we arrive at the result that in order to optimize the sensitivity of an interferometer, given control only over the properties of the dipole, we must minimize $|\Gamma_A - \Gamma_{opt}|$. Γ_A is related to the impedance of the antenna, Z_A, by

$$\Gamma_A = \frac{Z_A - Z_0}{Z_A + Z_0}$$

(1.16)

where Z_0 is the characteristic impedance of the system.

The investigation that follows in this thesis can be summarized as a systematic approach to finding a new dipole design that minimizes T_{sys} across the range of frequencies typical of a low-frequency interferometer like the MWA LFD.

![MW A LFD Dual-Polarization Dipole](image)

Figure 1.6: MWA LFD Dual-Polarization Dipole. [4]
Chapter 2

Broadband Antennas

2.1 Antenna Basics

The function of an antenna is to transform a free-space wave to a guided wave, or vice versa [26]. An antenna is often modeled as a two-terminal network whose impedance, Z_A, is the ratio of voltage to current at its terminals, or feed. Like a circuit element, the impedance of an antenna is a complex-valued function of frequency. In general, the value of this function depends not only on the structure of the antenna but the environment surrounding it. This is because the impedance presented by an antenna changes due to electromagnetic coupling with objects around it such as ground or other antennas [27]. The term \textit{self-impedance} is used to describe the impedance in the case where the structure is in empty space, free from any such external effects. For simplicity, any reference to the impedance of an antenna beyond this point will implicitly mean the self-impedance.

In receiving mode, the antenna extracts energy from incident radiation and delivers it to the network connected to its terminals. Consider an antenna subject to an electromagnetic field, with a load of impedance Z_L connected across its feed. The antenna may be replaced by a Thévenin equivalent. Then, by the reciprocity theorem of linear circuits ([28]), the impedance associated with this Thévenin equivalent must be Z_A in order to be consistent with the two-port equivalent in the transmitting case. The root-mean-square current I_{rms}
in the load is given by
\[I_{\text{rms}} = \frac{V_{\text{rms}}}{Z_L + Z_A}. \] (2.1)

Furthermore, the maximum power is delivered to the load when \(R_L = R_A \) and \(X_L = -X_A \), or \(Z_L = Z_A^* \) [29]. The effective aperture of an antenna is defined by the ratio of the power delivered to the load, \(W_L = I_{\text{rms}}^2 R_L \), to the incident power density, \(S \) (W/m\(^2\)):
\[A_{\text{eff}} = \frac{W_L}{S} \] [21]. (2.2)

Effective aperture is therefore dependent on the match between the antenna and the load. Unfortunately, in radio astronomy literature, effective aperture is always stated with the implicit assumption of a conjugate impedance match – this includes most references in the first chapter. What they really mean is the maximum effective aperture, which is equation 2.2 in the case that the LNA is conjugately matched to the antenna. The expressions such as the one for minimum detectable source temperature, equation 1.9, are valid with maximum \(A_{\text{eff}} \) so long as impedance mismatch is taken into account in the \(T_{\text{sys}} \) term, as in equation 1.11. It is also important to note that although conjugate matching results in the maximum power being delivered from the antenna to the load, it is not optimum for minimizing \(T_{\text{sys}} \). The derivation leading to equation 1.14 demonstrated that the optimal match is such that \(\Gamma_A = \Gamma_{\text{opt}} \), which depends on the amplifier following the antenna. This seemingly contradictory result is often encountered in the design of microwave amplifier circuits [25].

Now that we have the meaning of antenna impedance and understand how it effects the performance of a radio telescope, we can examine how an actual antenna behaves. Consider a sinusoidal voltage generator, each terminal of which is connected to a thin wire as in Figure 2.1. The oscillations of charges in the wires excited by the voltage source will produce radiation at the same frequency as the applied signal. This is the simplest form of a dipole antenna. A travelling wave of current propagates from the generator to the end of each wire. When it reaches the end, there is a reflection with a 180 degree phase reversal, and the sum of the outbound and inbound waves forms a standing wave across the antenna. When the length of the antenna, \(l \) is equal to half of the wavelength, \(\lambda \), of the travelling current wave in the conductor, the reflected wave constructively interferes with the outbound one [30].
This produces a maximum in the magnitude of the current standing wave at the near end of each wire. The same resonance also occurs when \(l \) is equal to a larger odd multiple of \(\frac{\lambda}{2} \). Another interesting case occurs when \(l \ll \lambda \). Then, there is not enough spatial variation in the travelling wave for appreciable interference to take place between the reflected and outbound waves, and the magnitude of the overall current oscillation falls off approximately linearly with distance from the center.

At this point it is useful to introduce radiation resistance, \(R_r \), which in general is not the same as \(R_A \). Its definition is also dependent on the type of antenna being considered. For a thin dipole, the current distribution is sinusoidal, and \(R_r \) is defined through the power emitted in transmitting mode, \(W_{emit} \), given the amplitude of the standing wave of current on the dipole, \(I_0 \), such that:

\[
W_{emit} = \frac{I_0^2}{2} R_r \quad [31].
\]
(2.3)

Since \(Z_A \) is defined by the current at the terminals of the antenna, \(R_A \) will be different from \(R_r \) if the current distribution peaks away from the center of the dipole. Such is the case when destructive interference between the outbound and inbound travelling current waves occurs at the feed, for example when \(l = \frac{3}{4} \lambda \). For a dipole of length \(l \leq \lambda/4 \) the current maximum always occurs at the feed and so \(R_r = R_A \). In general, the two-terminal resistance and the radiation resistance of a dipole are related by

\[
\frac{I_A^2}{2} R_A = \frac{I_0^2}{2} R_r
\]
(2.4)

where \(I_A \) is the current amplitude at the feed of the dipole and \(I_0 \) is the amplitude of the standing wave of current on the dipole [31].

Figure 2.1: Basic dipole antenna.

The simulated impedance response of a straight dipole with a length of 1 m and a wire radius of 1 mm is plotted in Figure 2.2. The antenna simulation was carried out with
nec2c (described later) [32]. The plot, and all the others hereafter printed in this thesis, were generated with a combination of Perl (v5.8.7) and Gnuplot (4th Berkeley Distribution) scripts [33], [34]. The solid curve is the resistance, corresponding to the vertical scale on the left side of the plot, and the dashed curve is the reactance, corresponding to the right scale. Frequency is varied along the horizontal axis from 75 MHz to 300 MHz. Notice that the reactance goes to zero around 140 MHz, which corresponds to a wavelength just over twice the total length of the dipole. The reason the resonance is at 140 MHz and not 150 MHz is due to the lower propagation speed of electromagnetic waves inside the conductor. In practice the reactance of a dipole of length l vanishes for a free space wavelength between about $2.08l$ and $2.13l$, the exact value depending on the thickness of the wire. Conversely, to resonate at a free space wavelength λ, l should be between 0.47λ and 0.48λ [35].

![Image](image.png)

Figure 2.2: Impedance response of a 1 meter dipole.

It is preferable to operate a dipole at or near the half-wave resonance because the low reactance allows a good match to the characteristic impedance of the transmission line in between the feed and the amplifier, which is generally either 50 Ω or 75 Ω. In fact, 75 Ω is not an arbitrary standard for characteristic impedance — it is the approximate value of the impedance of a dipole antenna when $l = \lambda/2$ [35].
2.2 The Bow-tie: A Traditional Broadband Dipole

As long as the structure under consideration is a perfect conductor, then the wavelength of the solutions to Maxwell’s equations will scale in proportion to a change in scale of the structure [36]. This summarizes the approach taken to the concept of frequency-independent antennas starting in the 1950s. V. H. Rumsey hypothesized that an antenna whose geometry is defined only by angles would be frequency-independent. To define a structure only be angles means that the radius is unbounded, and therefore a truly frequency-independent antenna is impossible to construct. However, a truncated version could still possess great bandwidth. For example, work along these lines by DuHamel and Isbell led to the development of log periodic structures, which possess multiple-octave bandwidths. However, log periodic arrays lack the wide main beam of a dipole [37]. Recall that having a wide main beam in the elements of an MWA LFD-style low-frequency interferometer is critical in order to facilitate electronic steering and a wide field of view. In the next section we will see how Rumsey’s original idea resurfaced years later with the first fractal antennas.

Even before Rumsey had outlined the formal criterion for an ideal frequency-independent antenna, J. D. Kraus graphically demonstrated in his 1950 text how successively crude approximations to a truncated self-scaling structure can form practical broadband antennas. With each step, the antenna is easier to build, but consequently has narrower bandwidth. One of Kraus’ antennas is a kind of planar dipole, derived from a two-wire self-scaling transmission line. It is known in the field as a bow-tie, composed of two oppositely facing, solid triangular sheets [37]. To ease the fabrication, the triangles of the bow-tie can be constructed with a wire frame instead of solid sheets.

A model of the bow-tie dipole used by the MWA LFD is shown in Figure 2.3. This antenna visualization, and all others that appear hereafter in this thesis, were generated with Xnecview (v1.34) [38]. The resistance and reactance of a thin wire version of this antenna are compared to that of the dipole from the first section in Figure 2.4. The total length of the bow-tie is 60 cm, and the opening angle of the triangle is 90 degrees. The bow-tie shows a smaller range of variation in both resistance and reactance across the band. It is
also interesting to compare where resonance occurs; for the bow-tie the reactance vanishes at about 130 MHz. If one had mistakenly applied the theory of a straight dipole to this antenna, one would have expected the resonance to be at $300/(2.1 \cdot 0.6) \sim 240$ MHz. This shows one of the beneficial properties of the bow-tie: its fits a greater effective aperture in the same footprint as a straight dipole. This is an important consideration for an application such as the MWA LFD because of the proximity of the antennas composing each tile (see Figure 1.4). Electromagnetic coupling — scattering between the dipoles — has the potential to degrade the beam pattern of the tile. But having the antennas close together in the tile has two benefits: aliasing lobes in the tile’s beam pattern are eliminated (this requires the spacing be less than $\lambda/2$ [39]), and the field of view is larger. The dimension of the tile in the LFD is in fact a compromise between these design aims and the minimization of mutual coupling [40]. With shorter dipoles like this bow-tie, the antennas can be placed closer together than less footprint-efficient antennas and achieve the same suppression of mutual coupling.

Figure 2.5 contains polar plots of the reflection coefficients of the dipoles. In the top plot, Γ is computed with respect to 75 Ω for the straight dipole and the bow-tie. In the lower plot, just the bow-tie’s response is plotted for three different characteristic impedances: 75 Ω, 150 Ω, and 300 Ω. In both cases the points are plotted in 5 MHz intervals from 75 MHz to 300 MHz. For all the Γ plots, the low-frequency end corresponds to the end closer
Table 2.1: Comparison of mean $|\Gamma|$ and mean $\frac{T_{LNA}}{T_{sys}}$

| Antenna | $< |\Gamma|>$ | $< \frac{T_{LNA}}{T_{sys}}>$ |
|------------------|--------------|-------------------------------|
| Straight Dipole | 0.76 | 0.38 |
| LFD Bow-tie | 0.65 | 0.20 |

to the outer boundary of the plot. In all cases this is the part of the band where the match is poorest, because of the low resistance of any dipole that is much smaller than λ; R_A is expected to fall as $\frac{1}{\lambda^2}$ at wavelengths much longer than the antenna [31].

The bow-tie resistance at resonance is 28 Ω, significantly lower than any of the characteristic impedances, and as a consequence its Γ curve never passes through the origin like that of the straight dipole. However, on average most of the bow-tie’s points are closer to the origin. This is quantitatively shown in Table 2.1, where the computed mean values of the Γ responses are listed for $Z_0 = 75 \Omega$.

As was concluded in the first chapter, what ultimately controls the performance of an interferometer of fixed aperture is the system temperature. However, in order to compute T_{LNA}, the amplifier parameters R_N and F_{min} must be set (see equation 1.14). Through correspondence with Eric Kratzenberg, a research engineer at the MIT Haystack Observatory, we obtained enough information about the LNA circuit being employed in the MWA LFD to set reasonable values. Most importantly, although the characteristic impedance of the MWA LFD is 75 Ω, the amplifier is configured as a differential pair, where the base of each transistor is connected to one terminal of the antenna. The circuit analysis of a differential pair shows that such a configuration effectively doubles the impedance presented to the source (see e.g. [41]). Therefore before solving for the system temperature, the impedance of the antenna, Z_A, should be halved under these circumstances. The device used in the differential pair is the Avago Technologies ATF-54143, a pseudomorphic high electron mobility transistor (pHEMT).

The manufacturer’s data for the ATF-54143 when $V_{DS} = 3$ V and $I_{DS} = 80$ mA indicates that for the frequencies under consideration, F_{min} and R_N are essentially constant. The data
sheet does not specify Γ_{opt} below 500 MHz. However, based on personal correspondence with Eric Kratzenberg we decided that it varies slowly enough with frequency that it is a reasonable approximation to set Γ_{opt} to the 500 MHz value across our band of operation [43].

Note that the manufacturer gives Γ_{opt} with respect to a 50 Ω system impedance; we had to renormalize it for our 75 Ω system impedance. Using these LNA parameters (listed in Table 2.2), T_{LNA} can be estimated at any frequency where the antenna impedance has been evaluated (see equation 1.15).

Because the sky noise from the synchrotron foreground is frequency dependent, the proportion of the LNA’s contribution to T_{sys} would vary across the band even for a constant $|\Gamma|$. Therefore, as a performance measure it is more insightful to consider the fraction $\frac{T_{\text{LNA}}}{T_{\text{sys}}}$ rather than T_{LNA} by itself. This reveals the true degree to which the interferometer has reached the design goal of being sky noise limited, as it is referred to in the field [20]. The theoretical average of this ratio across the frequency band is shown in Table 2.1 for both dipoles. The theoretical ratio as a function of frequency is show in Figure 2.6. It is interesting to see that even though the impedance match is poorest at the low end of the frequency band, as evident in Figure 2.5, it is the high end of the band where the contribution of the LNA to T_{sys} is most problematic. This is due to the fact that at high frequencies T_{sky} drops dramatically, reaching as low as 60 K at 300 MHz. On the other hand, T_{sky} is 2000 K at 75 MHz — more than enough to counteract the impedance mismatch.

The thin wire bow-tie represents a dramatic improvement over the 1 m straight dipole, reducing the average $\frac{T_{\text{LNA}}}{T_{\text{sys}}}$ by almost 50% (see Table 2.1). Up until now, we’ve only looked at simulations for antennas with a 1 mm wire radius. However, if you examine closely the photo

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{min}</td>
<td>1.05</td>
</tr>
<tr>
<td>R_N</td>
<td>2 Ω</td>
</tr>
<tr>
<td>Γ_{opt}</td>
<td>$-0.12 + j0.21$</td>
</tr>
</tbody>
</table>

Table 2.2: Low-frequency LNA Parameters for $Z_0 = 75$ Ω, based on the ATF-54143 data sheet. [42]
in Figure 1.6, you’ll see that the wires are significantly thicker than 2 mm – closer to 2 cm, in fact. Thicker wires add to the durability of the structure, which in practice will be exposed to the elements for several years. Increasing the radius of the conductor also decreases the range over which both the resistance and reactance of the antenna vary with frequency, thereby improving the bandwidth [44]. The MWA LFD antenna, constructed with u-channel sections, benefits from this fact. However, we found that solutions from our simulator, nec2c, were not robust for antennas with large wire radius. More specifically, the results of the simulation were very sensitive to the user-specified segmentation of the structure. Since the accuracy of those simulations is questionable, we do not bother presenting calculations of $\frac{T_{LNA}}{T_{sys}}$ for the thick wire case. Still, it is a useful design variable to keep in mind.

Revisiting the plot of Figure 2.6, we see that the performance of the MWA LFD bow-tie is excellent for low frequencies. Nevertheless, above 225 MHz, $\frac{T_{LNA}}{T_{sys}}$ exceeds 0.2 and grows linearly, approaching the noise contribution of the sky. Is there another dipole shape that can further decrease T_{LNA}?
Figure 2.4: Impedance Comparison between the LFD bow-tie dipole and the straight 1 m dipole.
Figure 2.5: Reflection coefficient plots. Top panel is a comparison between a bow-tie and a straight dipole, and the bottom panel is just the bow-tie.
Figure 2.6: Theoretical system temperature performance comparison between thin wire bow-tie and straight dipole.
2.3 Fractal Geometry

A fractal is a figure which displays the same geometrical motif at arbitrarily large and small scales. There is no concise mathematical definition of a fractal, as the typical criteria commonly associated with them — self-similarity, dimension — have multiple valid meanings [45]. Instead of addressing the overall theory of fractal geometry, we will start by describing a specific category of fractals which are particularly useful in engineering due to their ease of generation and friendliness to data structure encoding.

Iterated Function System fractals are generated by the endless repetition of a series of transformations on an object. Upon each application of these transformations, a certain geometrical motif is manifested at a successively smaller scale. A classic example, the Koch Snowflake, illustrates the visual evolution of a shape subjected to an iterated function system (IFS).

![Koch Snowflake](image)

Figure 2.7: Koch snowflake. [6]

Formally, an IFS fractal such as the Koch Snowflake above can be described by the iterative application of a set of affine transformations on a subset of the Euclidean plane, \(\mathbb{R}^2 \). An affine transformation, \(h : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \), is defined as

\[
h(x_1, x_2) = \begin{pmatrix} r_1 \cos \theta_1 & r_1 \sin \theta_1 \\ -r_2 \sin \theta_2 & r_2 \cos \theta_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} = Ax + t
\]

where \(\{x = (x_1, x_2), t = (t_1, t_2)\} \in \mathbb{R}^2 \) and \(A \in \mathbb{M}_{2 \times 2}(\mathbb{R}) \) [46]. If \(0 < r_1 < 1 \) and \(0 < r_2 < 1 \), then the affine transformation is a contraction, which means that any two points are mapped
closer together than they were before the transformation. The union of a family of M affine transformations is a Hutchinson operator, $H(S)$, denoted

$$H(S) = \bigcup_{i=1}^{M} h_i(S)$$

where $S \subset \mathbb{R}^2$ [47]. If every affine transformation contained in the Hutchinson operator is a contraction, then the repeated application of H to any set $S \subset \mathbb{R}^2$, the generator, results in a convergence to $F \subset \mathbb{R}^2$, known as the attractor set of the IFS [48]. By definition, F is invariant under H, so that $F = H(F)$. The subset of \mathbb{R}^2 resulting from the jth application of H to S can be denoted as $H^j(S)$, $j \geq 1$. At a fixed j

$$H^j(S) = \bigcup_{Q_j} h_{i_1}(h_{i_2}(\cdots(h_{i_j}(S))\cdots)).$$

Here Q_j is the set of all ordered sequences (i_1, \ldots, i_j) of length j with $1 \leq i_k \leq M$ [49]. For example, the subset resulting from the second iteration of H on the generator S, $H^2(S)$, is the union $h_1(h_1(S)) \cup h_1(h_2(S)) \cup h_2(h_1(S)) \cup h_2(h_2(S))$. As j increases, $H^j(S)$ resembles the attractor set F more and more closely.

A special case of an affine transformation is a similitude or similarity transformation, for which

$$A = \begin{pmatrix} r \cos \theta & -r \sin \theta \\ r \sin \theta & r \cos \theta \end{pmatrix}$$

[46]

This is intuitively understood as an operator that never stretches a shape in one direction more than the other — there is merely scaling and rotation caused by A and translation caused by the vector t. When the Hutchinson operator is composed of only similarity transformations, then the attractor is a self-similar fractal. Self-similar fractals such as the Koch curve have the remarkable property that looking at a given piece, no matter how closely examined, gives no hint as to the scale of your window. More generally, $r_1 \neq r_2$, and an affine transformation can map a square to a parallelogram, for example. In this case the attractor of the IFS is a self-affine fractal. On a self-affine fractal, the motifs present at different scales may be distinguishable.
The \(j \)th iteration of the IFS, \(H^j(S) \), is an approximation of the attractor/fractal set, commonly referred to as a prefractal [49], or from a physical standpoint, a bandlimited fractal [50].

The consideration of random variations in the IFS opens up an enormous range of possibilities to add to our definition of a fractal. In particular, one can imagine mapping the entries of the transformation matrix to probability distributions, from which slight variations in the motif will result at each iteration. The imposition of random variations on a self-similar IFS results in what is often referred to as statistical self-similarity, or more loosely, a random fractal.

2.4 The Electrical Properties of Fractal Conductors

The first investigation into the interaction of electromagnetic waves with fractal boundaries was lead by Dwight L. Jaggard’s group at the University of Pennsylvania in the late 1980s; this work is summarized in [50] and expounded upon in [51]. In the mid 1990s the first publications detailing results of antennas constructed in the shape of prefractals appeared; these early efforts were independently lead by Carles Puente at the Universitat Politècnica de Catalunya in Spain and Nathan Cohen in the United States [52], [53]. There are two main features of prefractal antennas demonstrated by these pioneers that have stimulated continued research in this field. First, prefractal antennas offer inherent multiband resonance without the appendage of reactive networks. Second, certain prefractal antennas take up significantly less space in comparison to conventional antennas resonating at the same given wavelength. Furthermore, it became apparent that previous successful efforts to create frequency-independent structures, such as log-periodic arrays and spiral antennas, can all be described within the framework of fractal geometry [53].

Puente et al. have offered a theoretical explanation for the multiple resonances of self-similar fractal shapes, which we will now paraphrase [47]. The approach relies on the same scaling properties of Maxwell’s equations that were used by Rumsey and his contemporaries.
First, a binary valued index function is defined by
\[G(x_1, x_2) = \begin{cases} 1 & \text{if } (x_1, x_2) \in S \\ 0 & \text{if } (x_1, x_2) \notin S \end{cases} \]
where \(S \) is the usual initial subset of the Euclidean plane that is to be transformed. A translation of points in \(S \) can be described using convolution with a Dirac delta function:
\[G(x_1 - x_{10}, x_2 - x_{20}) = G(x_1, x_2) \ast \delta(x_1 - x_{10}, x_2 - x_{20}) \]
where \((x_{10}, x_{20})\) is the new resulting point. A Hutchinson operator containing \(M \) similarity translations can be represented as
\[H(G(x_1, x_2)) = \sum_{i=1}^{M} G(r_i x_1, r_i x_2) \ast \delta(x_1 - x_{1i}, x_2 - x_{2i}) \]
where \(0 < r < 1 \). If the scaling factor is the same for each of the \(M \) contractions, so that \(r_i = r \), then this can be further simplified to
\[H(G(x_1, x_2)) = G(r x_1, r x_2) \ast IF(x_1, x_2) \]
where \(IF(x_1, x_2) = \sum_{i=1}^{M} \delta(x_1 - x_{1i}, x_2 - x_{2i}) \) and \(IF \) stands for iterator function. For the \(n \)th application of the iterator function, we will have
\[G_n(x_1, x_2) = G(r^n x_1, r^n x_2) \ast IF(r^{n-1} x_1, r^{n-1} x_2) \ast \cdots \ast IF(x_1, x_2) \]
\[= G(r^n x_1, r^n x_2) \bigotimes_{j=0}^{n-1} IF(r^j x_1, r^j x_2) \]
where \(\bigotimes \) denotes the convolution operator. For large \(n \), \(G(r^n x_1, r^n x_2) \) converges, and it will be just as valid for the original \(G(x_1, x_2) \) to have been an impulse function. This way, the attractor set \(F \) can be described as
\[F(x_1, x_2) = \bigotimes_{j=0}^{\infty} IF(r^j x_1, r^j x_2) \]
\(F \) is self-similar in the same manner as the set theory of description from the previous section. However, \(F \) is finite and thus not truly self-scalable, in which case an identical motif would
appear at arbitrarily small and large scales. The finite size of F means that it has an upper limit to the scale of repetition of the iterative function. This is fixed by redefining the limits of the convolution operator for G_n and F:

$$G_n(x_1, x_2) = \bigotimes_{j=-(n-1)}^{n-1} IF(r^j x_1, r^j x_2) \quad \text{and} \quad F(x_1, x_2) = \bigotimes_{j=-\infty}^{\infty} IF(r^j x_1, r^j x_2)$$

Now the attractor is self-scalable since

$$F(r^p x_1, r^p x_2) = \bigotimes_{j=-\infty}^{\infty} IF(r^{j+p} x_1, r^{j+p} x_2)$$

and letting $k = j + p$, this simplifies to

$$\bigotimes_{k=-\infty}^{\infty} IF(r^k x_1, r^k x_2) = F(x_1, x_2)$$

The geometric motif of such a self-similar structure repeats logarithmically according to the scaling factor r. Likewise the wavelengths of the currents and fields for such a structure repeat in a log-periodic fashion in accordance with the scaling principle of Maxwell’s equations [47].

The assumptions that have been made do not correspond to a realizable structure, because the scales of the iterator functions represented in the fabrication will always have a lower and upper bound. However, in practice a finite prefractal antenna can approximate this frequency-periodic behavior to the extent that the IFS iterations are physically realized, as demonstrated by the experiments of Puente et al.

Notice that even though this proof predicts multiple resonances, Puente et al. do not claim that a fractal antenna can offer a response that is resonant over the scale of an octave rather than at discretely-spaced narrow bands. One might suppose that an IFS with a scaling factor r approaching unity would offer this solution, by shrinking the period between resonances. However, even in the case that a structure with a near unity r is realized, the structure’s efficacy as an antenna is in no way guaranteed. Therefore, without experimentation it is uncertain whether or not the above argument is meaningful for an application that is broadband rather than multiband.
2.5 The Tree Fractal Dipole

As it happens, not a great deal of IFS systems have been found with \(r \) close to unity that also function well as antennas. As an example, in the Koch snowflake motif of Figure 1, \(r = 1/3 \). This particular design has been proven useful as a wire antenna for multiband applications but would be a poor solution for a broadband system due to the fact that the resonating wavelengths are separated by factors of 3. However, a very different IFS does show promise in this area — one that mimics the branching of a tree [54], [55]. The above references discuss miniature tree antennas formed from a random meandering deposit on a printed circuit board. Such a structure would be unfeasible to mimic on the scale of meter wavelengths. The only discussion in the literature of a wire antenna based on a tree motif is by J. P. Gianvittorio and Y. Rahmat-Samii, but they also only consider performance in the small antenna limit (\(l \ll \lambda \)) [56]. Their simulations do determine that a two-dimensional binary tree fractal has excellent space-filling properties, a result which we were able to reproduce.

The IFS algorithm to form a regular binary tree fractal is as follows: start out with a line segment of length \(l_0 \). Remove the top fraction \(r \) of the line segment, and replace it by a pair of branches forming an angle \(\theta \), each of whose length is \(l_0 \cdot r \). Recursively apply this to the tips of the branches until the intended number of iterations is reached. Mirroring the resulting shape along the axis of the original segment, and cutting out a small gap at the half-way mark between the ends leaves you with two terminals with which to either receive or transmit power by. An example of a computer-generated, fourth iteration binary tree dipole is shown in Figure 2.8. With the exception of length, its parameters were chosen to match the dipole simulated by Gianvittorio et al. The scale factor, \(r \), is \(1/3 \), and \(\theta \) is 60 degrees. Starting with an initial line segment with \(l_0 = 37.5 \) cm, the half length of the tree dipole after four iterations is about 40 cm.

Figure 2.9 is a comparison of \(|\Gamma|\) versus frequency for this binary tree dipole described above and a straight dipole whose length was tuned to the same resonant frequency. \(|\Gamma|\) is computed with reference to 75 \(\Omega \) in both cases. The necessary length of the straight dipole, 122 cm, demonstrates the miniaturizing properties of the binary tree, which can be
summarized as follows: a binary tree formed with Gianvittorio’s IFS parameters of length $\sim \frac{2}{3}l$ achieves the same resonant frequency as a straight dipole of length l. The $|\Gamma|$ minimum is not as low for the binary tree as for the straight dipole because as in the case of the bow-tie, the resistance is lower than Z_0 at resonance. Comparing the $|\Gamma|$ curves, it is apparent that the Gianvittorio binary tree does not improve the bandwidth of the straight dipole.

Does this mean that binary trees cannot serve as broadband dipoles? Gianvittorio’s parameters were arbitrary. There are countless implementations of the tree pattern that remain to be considered. Assuming that the intended radiation pattern is symmetric about the Cartesian plane dissecting the tree, the only requirement is that vertical and horizontal symmetry are preserved. Therefore, the branching angles at each node of the tree can be changed so long as the result is mirrored about the center line. Highly irregular variations on the IFS should also be considered, so that the relationship between the length of branch segments is no longer trivially deduced from how “deep” the segment is into the tree, and that the branching angle is also variable. The height of the tree trunk should be independently
Figure 2.9: $|\Gamma|$ Comparison between a Gianvittorio binary tree and a straight dipole, tuned to the same resonance.

adjustable as well. These allowances leave freedom for the possibility of finding an optimum tree pattern is not actually fractal at all.

The sheer enormity of combinations of variables suggests that a brute force, trial-and-error method is hopeless in fully exploring the space of valid solutions. Rather, an automated approach of learned, adaptive evaluation of candidates appears far more likely to succeed.
Chapter 3

The Genetic Antenna Optimizer

3.1 Genetic Algorithms

A genetic algorithm autonomously searches a space of parameter vectors for optimal values based on a specified metric of goodness. It falls under a category known as evolutionary algorithms, which mimic biological processes in order to address optimization problems. Darwinian selection rules are used to combine and propagate the most successful traits from a pool of iteratively generated candidates [57].

Although implementations may vary widely in complexity and philosophy as demanded by particular applications, the general procedure followed by many programmers is as follows. First, a scheme must be created that encodes all the relevant free parameters of the problem into a vector whose function is analogous to that of an organism’s chromosome. The algorithm begins with an initial population, created by setting the genes of each member, contained in individual chromosomes, to random values. After this initialization stage, the algorithm enters a loop which repeats until a condition set by the user is met. This condition is either the completion of a certain number of generations or the achievement of a certain figure of merit by one of the candidates.

During each iteration of this loop, several actions are performed in succession: (i) The goodness of each member of the current population is evaluated using a global metric. The rankings of goodness are translated into probabilities of survival. (ii) Based on the eval-
uations, a schematic is created to describe how the next population will be formed. The schematic specifies one of three modes for each replacement: *elite, recombination, or mutation*. (iii) Following the schematic, the replacement population is generated, overwriting the old population.

The details of step (ii) are the heart of the genetic algorithm, and due to the wide variety of implementations, they cannot be explained without a loss of generality. Therefore, we will only describe our method. An *elite* chromosome is one that has a high enough goodness that it is passed on to the next generation unmodified. Usually only a very small portion of the population (< 5%) is created in this way. *Recombination*, on the other hand, is much more important because it results in new combinations of parameters being tested. In recombination, two vectors are stochastically selected in accordance with their assigned survival probabilities. Therefore, the vector with the highest goodness has the greatest chance of being selected, and so on. Such a mode of selection is referred to as *roulette selection*. Recombination results in a new replacement vector created with parameters that are a mixture of the two roulette-selected vectors. Consider a simple case where each parameter vector consists of a string of four values, so that the two selected vectors may be symbolically represented as *abcd* and *pqrs*. The simplest way to produce a new vector through recombination is to randomly choose from either of the two parent values for each parameter. This way, the offspring could turn out to be *abrd* or *pbcs*, for example. Lastly, *mutation* is the way in which new gene values are added to the pool. In our algorithm, we begin mutation by setting the replacement vector equal to the parent vector. Then we add a random variable with a Gaussian distribution to each gene.

In practice, the average goodness value of the population rises quickly from the initial population, and in later iterations decelerates as the algorithm converges on a single vector. As there is considerable freedom in the design of the algorithm, there is no guaranteed best choice of characteristics such as population size, likelihood of recombination, likelihood of mutation, or method of recombination. All of these require tweaking based on trial runs. As an example of the effects these variables have on the execution, it has been noted that
if too much favoritism is given to the fittest vectors of the population, then the solution may get stuck approaching a local peak instead of exploring other regions of the parameter landscape, where far better solutions may remain [57]. Therefore, it is beneficial not to map the worst members of the population to miniscule survival probabilities.

The genetic algorithm is non-deterministic, and therefore multiple runs may result in different champions. In comparison with other optimization methods, the genetic algorithm performs slowly. This is because unlike other algorithms that keep just one candidate after each iteration, a genetic algorithm carries a full population throughout the execution. Each member that is the result of a modification needs to be evaluated, which is typically the most computationally expensive part of the algorithm. Nevertheless, for certain classes of problems they have demonstrated excellent results. Antenna engineering is one such field where they have repeatedly been shown to be applicable [58], [59], [60]. In such a problem, the parameters to be optimized might be the geometry of the antenna, the placement and value of discrete loads on the antenna structure, or the phase and magnitude of excitations applied to an array of antenna elements. The goodness of a given design might be defined relative to the impedance response or radiation pattern.

3.2 Overview of the Genetic Algorithm

In order to search for an improved dipole meeting the demands of the MWA LFD, a genetic algorithm was developed. The scope of our algorithm is limited to the optimization of impedance response. Radiation pattern is an important factor of the design – ideally, the dipole will have a wide main beam to allow the tile to be steered over a large area of the sky without great losses in sensitivity. However, from the beginning of the experiment we reasoned that a substantial improvement in the frequency response (as described in Chapter 2) would be interesting enough in and of itself regardless of the resulting radiation pattern. In case an antenna with an excellent response were found, the algorithm could be expanded to incorporate the evaluation of radiation pattern in a future project; if not, then the wasted effort would have been minimized.
In order to evaluate the response of each candidate antenna, we chose to have our algorithm call Numerical Electromagnetics Code 2 (NEC-2), a free program that is commonly used in antenna research. The bare-bones philosophy of NEC-2 is well suited to the task because rather than having a graphical user interface, it runs directly on UNIX shell commands, leaving results in a specified ASCII file. NEC was created at Lawrence Livermore Laboratory in 1981, a successor in a line of several antenna simulators created under US military funding \cite{61}. Its source code was later released to the public domain, with added features, as NEC-2 \cite{62}. Like its predecessors, NEC-2 allows the user to define a conducting structure composed of wires and smooth surfaces along with voltage/current generators and incident plane waves, and solves for the current distribution. For a pure thin wire structure (wire radius \ll wavelength), NEC-2 solves an electric field integral equation for the currents using the method of moments. The impedance looking in from any signal generators is computed for a specified array of frequencies and listed in the output file. The far field radiation pattern is also described at these frequencies if the relevant flag is set in the input file. There are many free versions of NEC-2 available on the web with slightly different features. We use nec2c (version rxq-0.2), a port of NEC-2 from Fortran to C, last released May 2004 \cite{32}. The one modification we made to nec2c’s source code before inclusion in our experiment was the removal of all output to stdout in order to not waste resources on I/O and fill up the terminal with unnecessary information. Our “silent” version of nec2c is hereafter referred to as nec2cSilent.

The NEC-2 input file describing a 1 meter straight dipole is listed here:

```
CM 1 meter dipole antenna
CE
GW 1 50 0.0 0.0 0.0 0.0 0.50 0.0 0.001
GX 1 010
GE 0
FR 0 46 0 0 75.0 5.0 0 0 0 0
EX 0 1 1 0 1 0 0 0 0 0
XQ 0
EN
```

In the original implementation of NEC, each line above corresponded to a different punch
card fed into a mainframe. The first two lines, or “cards”, specify the beginning and end of a comment (CM and CE). The third line defines a wire. From left to right, the numbers on the GW line have the following meaning: wire index, number of segments, x_1, y_1, z_1, x_2, y_2, z_2, and wire radius. This particular wire connects the origin to the point (0.0, 0.5, 0.0), and has a radius of 1 mm. On the next line, the GX command tells NEC-2 to reflect the wires specified above it along the y-axis, thereby forming one 1 meter wire, aligned along the y-axis and centered at the origin. The second argument of GX specifies the combination of axes of symmetry to apply. GE 0 indicates that there will be no ground plane used in the simulation. The FR line commands NEC-2 to evaluate the antenna at 46 frequencies, starting at 75.0 MHz and incrementing in multiples of 5.0 MHz, resulting in an end point of 300.0 MHz. The EX line defines the excitation; with these parameters NEC-2 will place an alternating voltage source at the first segment of wire 1. XQ is the execution command, which has optional arguments pertaining to radiation pattern that are not used here. EN simply marks the end of the NEC-2 input.

![Flowchart](image)

Figure 3.1: Overall flowchart of the antenna optimizer.

We chose to write the genetic algorithm source code in C because of its accommodation towards hierarchical data structures and the fact that it allows precise control of memory
resources. Throughout our work we used the GNU C compiler (gcc) version 3.2.2 [63]. A flowchart illustrating the overall concept of the algorithm is shown in Figure 3.1.

In the genetic algorithm, there are three data structure hierarchies that act in tandem, each one critical at different stages in the program. The top structure of the first hierarchy is a type called **NecInData**. The **NecInData** type fulfills the purpose of storing raw information for reading and writing NEC-2 formatted files. The translation of an instance of an **NecInData** structure to a file understandable by NEC-2 is trivial; it is a matter of dumping strings and numbers in the appropriate order, following the NEC-2 command syntax illustrated earlier in this section. It contains all the information needed to simulate an antenna except for its actual geometry. A second hierarchy, **CartMap**, contains information about how many wires there are in the antenna, and where they each begin and end. It contains the actual Cartesian coordinates of the line segments defining the structure. Together, the **NecInData** and **CartMap** give all of the necessary values needed to write an NEC-2 input file.

However, if the antenna being optimized has a certain motif, such as a tree, then a structure which specifies every line segment with floating point Cartesian coordinates would be very wasteful, and would not lend itself well to the actual genetic operations. For these purposes a chromosome data structure is used, whose definition is specific to each type of antenna. It contains only the parameters of the antenna that are subject to genetic operations. These parameters act as the genes of the chromosome. Each one is stored in a single byte (specified in C by the type **unsigned char**), with a range of [0, 127]. The chromosome data structures will be revisited later on in the context of the specific antenna shapes being optimized.

3.3 Parallelization

Midway through the development of the algorithm, we decided that it would be worthwhile to parallelize the code, in order to divide the computational load associated with the electromagnetic simulations amongst an arbitrary number of workstations. Local Area Multicomputer (LAM) is a free implementation of the Message Passing Interface (MPI), and it
contained all the tools needed for this purpose [64]. MPI is an industry standard describing routines by which identical, concurrently executing programs can share data during execution [65]. We compiled and configured LAM/MPI version 7.1.1 in a home directory on the Electrical Engineering Department’s Integrated Circuit Engineering (ICE) workstation cluster. Each ICE workstation has an Intel Pentium IV 3.2 GHz CPU, 1 GByte of RAM, and runs the Fedora GNU/Linux operating system with kernel version 2.4.20-8. Because the ICE cluster has a network file system, a user’s home directory as seen from each machine maps to the same disk storage. Therefore, the entire ICE cluster is ready to run parallel programs after a single home directory installation of LAM/MPI.

LAM/MPI includes an application program interface (API), which is the library of functions that we call in our genetic algorithm to pass data between copies of the program running on different nodes of the cluster. A number of executable tools are included along with the API, of which the most important for us are: mpicc, lamboot, and mpirun. mpicc is a gcc compiler “wrapper” that hides the long series of compiler flags and library links needed to produce an executable MPI application. Therefore, compiling the source of a program using MPI functions can be as simple as merely entering the command “mpicc myprogram.c”. Before the executable can be run, the LAM run-time environment must be started from any one of the cluster workstations with the lamboot command. One argument of lamboot is a file containing a list of network addresses corresponding to the machines that will each become a node of the cluster. These can be any machines on which LAM/MPI and automatic ssh key authentication have been configured. Therefore, a LAM/MPI cluster need not necessarily consist of homogeneous hardware on an ethernet. In our experiment, however, the ~10 workstations of the ICE cluster were deemed sufficient. Typically one wants to employ the entire cluster started with lamboot; in this case we enter “mpirun N myprogram” at the shell prompt to begin the parallel execution. In the default LAM architecture there is no master node; however, mpirun must be called from the same machine that completed lamboot.
3.4 Initialization

A header file named commonvar.h contains the definitions of the data structures that are common to all the antenna optimizers. It also contains a long list of preprocessor directives that specify parameters that can be varied between runs, such as the total population size and the number of generations to run the algorithm for. In the spirit of modularity, the data structure definitions and preprocessor directives specific to a given antenna species are stored in separate files (e.g. tree.h).

The initialization statements of the main function of the genetic algorithm are listed below. The code is taken from the binary tree optimizer, but between the antenna species there is only a slight variation in the names of the data types and variables.

```c
TreeParArray TPop;
CartParArray CartPop;
ChromTok *PhoneBook;
NecInData Props;
RegenInstruc *Schem;
TreeChrom *Lobby;
unsigned int InDisp[PTot];
```

These statements create instances of several data structures. The TreeParArray is a parallel array of tree chromosomes. This structure is parallel because it facilitates the division of its elements among the nodes of the cluster, so that each machine only “sees” its own part of the array. The CartParArray is similar to the TreeParArray except that it is an array of Cartesian antenna maps. Phonebook, an array of type ChromTok, is another structure for which only one instance is created in the entire program. It functions as a global directory of the entire population, storing the following information for each member: the home node, the local index on that node, the global index, and the metric associated with its evaluation. The NecInData structure is used to store the input parameters for NEC-2. Schem, a pointer to a structure of type RegenInstruc, holds the place of the instructions that specify the operations that transform the current generation into the next. Lobby functions as a holding cell, pointing to tree chromosomes that are either on their way out to be delivered to a fellow
node or have just arrived at the local node. InDisp is an array whose function is also related to transferring chromosomes between nodes.

The function calls of the initialization stage are listed below.

```c
create_tree_par_array(&TPop);
create_cart_par_array(&CartPop);
alloc_chromtok_array(&PhoneBook);
alloc_instruc_set(&Schem, TPop.LocalSize);
alloc_tree_array(&Lobby, 2*TPop.LocalSize);
init_pop(&TPop, &CartPop, &Props);
```

The first two calls initialize the parallel data structures in a very similar manner. Inside these functions, memory is allocated for the structures making up the array. Also, each node is assigned the range of global population indices that it controls throughout the algorithm. The following three functions (all of whose names begin with `alloc`) allocate memory for the data structure instances specified in their arguments. The memory is allocated locally, and the amount requested on a node is dependent on the share of the population that has been assigned to it. The population shares will not be exactly equal if the number of nodes in the cluster does not divide evenly into the total population. The last function, `init_pop`, does much more than the housekeeping that has been done up until this point.

From random numbers, `init_pop` fills the empty population with individual antennas that meet the definition of the species being optimized. For each member of the population, a sequence of random gene values composing a chromosome is generated. If these genes result in a valid structure, then it will move on to create the next member of the population. If not, it repeats the generation of a sequence of random genes until a valid member has been initialized. Depending on the algorithm parameters, this process can easily take over 100 tries for a given member. The first condition that is tested to discriminate a valid structure is to check that the structure falls within the boundaries specified in the algorithm input parameters, for example a 60 cm \(\times \) 60 cm square. If the structure is a tree antenna, then a second condition must be checked – that none of the branch wires cross each other. The algorithm to check for wire-crossing is revisited later on in further detail during the discussion on the genetic operations, as it is also needed to check newly derived antennas.
3.5 Main Loop

Here is the main loop of the genetic algorithm, with only some minor debugging and logging statements excluded for clarity:

```c
for(GenCounter = 0; GenCounter <= GENERATIONS; GenCounter++)
{
    if(GenCounter > 0)
    {
        create_schem(Schem, TPop, CartPop, PhoneBook);
        exchange_pop(Lobby, InDisp, Schem, TPop);
        regen_pop(Lobby, InDisp, Schem, &TPop, &CartPop);
    }
    write_pop(CartPop, Props);
    sort_pop(CartPop, PhoneBook, Props);
}
```

The optimizer is essentially complete once this loop has gone through the number of iterations specified by the user in the algorithm input parameters, `GENERATIONS`. `GENERATIONS` is on the order of 100 for most runs. On the first pass through the main loop, the regeneration code block is skipped, because the antennas of the initial population have yet to be evaluated. The `write_pop` function writes NEC-2 input files based on the Cartesian map array, `CartPop`, and the NEC-2 properties structure, `Props`. `sort_pop` is a long, multi-layered function that accomplishes three major tasks. First, it calls nec2cSilent on each of the input files created by `write_pop`. The total execution time of the genetic optimizer is dominated by the wait for nec2cSilent to finish evaluating the entire population. Keep in mind that each node of the cluster is only running NEC-2 on their own subset of the population – this division of labor is the entire goal of the parallelization. Next, a function inside `sort_pop` parses the output files left by nec2cSilent to evaluate the goodness of each antenna in their local subset, assigning each one a metric. The metrics and their associated antennas are sorted using a parallel quicksort routine, and the results are stored in `PhoneBook`. The elements of the `PhoneBook` are ordered by metric, so that `PhoneBook[0]` indicates where the champion chromosome is, what its local and global indices are, and what its metric is.

On the second pass through the main loop, and every pass thereafter, the regeneration
block is executed. The first function, create_schem, forms the scheme of regeneration, and its inner workings are as follows. First, each member of the population is assigned a roulette area that will define its probability of being selected during the upcoming genetic operations. The roulette area is proportional to \(1/\sqrt{\text{rank}} + 1\), where \(\text{rank}\) is an integer in the range \([0, \text{POPULATION} - 1]\) and lower \(\text{rank}\) is better. Next, two parameters defined by the user in the input header file of the algorithm come into play, ELITE_Frac and CROSS_Frac. ELITE_Frac is a floating point value in the range \([0, 1]\) that specifies how much of the population will survive as elites. This is typically a relatively small value such as 0.01. CROSS_Frac indicates the percentage of the non-elite population that will be regenerated through recombination (also known as crossover) instead of mutation. In the final trials of our experiment, CROSS_Frac was set to 0.5.

Next, a loop is entered that selects the mode of regeneration of each new member of the population. Suppose that \(i\) is the iteration counter of this loop. If the \(\text{rank}\) of the \(i\)th member of the old population is low enough to place it in the top \(\text{ELITE_Frac} \times 100\) percentage of the population, then a regeneration mode flag in Schem\([i]\) is set to a value that tells the algorithm to pass the \(i\)th member on to the next generation unmodified. If the \(i\)th member is not elite, then a random number decides whether the mode will be recombination or mutation, making use of CROSS_Frac to control the likelihood of the respective outcomes.

If the random number lands in the range mapped to a recombination instruction, two parent members are stochastically selected from the global population. The likelihood of a chromosome being selected is proportional to the roulette area assigned to it at the beginning of the function. The populations used in this experiment are large enough (on the order of 100) that no provision is made to prevent the selection of identical parents. In addition to the regeneration mode being set to the nominal recombination value, the home node and the local and global indices of each parent are stored in Schem\([i]\). If the random number chooses a mutation instruction (the only other possibility allowed), then only one parent is selected, with the same roulette method as for the individual recombination parents. Again, the relevant information needed for carrying out the regeneration is stored in Schem\([i]\).
In the process described above, the parents of the new \(i \)th member are selected from the \textit{global} pool of chromosomes. This means that members will need to be transported from one node to another in order for each node to carry out its share of the regeneration instructions. \texttt{exchange_pop} is the function that serves this purpose. To do this in the most efficient manner, each node determines two matrices: one specifying the incoming chromosomes and one specifying the outgoing chromosomes. In such a matrix, the column indicates the node that is being considered. Then, each column contains the local indices of the chromosomes that are being transported to or from that column’s node. The length of the columns will generally be uneven because \texttt{create_schem} makes no attempt to equally distribute the flux between nodes. The data structure allocated before the main loop, \texttt{Lobby}, serves as the intermediate storage space for outgoing and incoming chromosomes, which are passed between nodes using a number of calls to MPI library functions. Once the requested chromosomes have been moved to the \texttt{Lobby} structures of the expectant nodes, \texttt{exchange_pop}’s job is done.

The last main loop function to be described is the core of the genetic algorithm, \texttt{regen_pop}. It has the instructions it needs, thanks to \texttt{create_schem}, and it has the data it needs, thanks to \texttt{exchange_pop}. Inside \texttt{regen_pop} is a loop that overwrites each spot of the old population one at a time. At iteration \(i \), the first step is to check the mode of regeneration and act accordingly. If the mode is elite, a flag is raised in the Cartesian map associated with the member indicating that the antenna does not need to be reevaluated later on in \texttt{sort_pop}. Since both the Cartesian map and the chromosome remain the same, nothing else need be done before advancing to the next member. If the mode is recombination, then the recombination function is called on the two parents. Lastly, if the mode is mutation, then the mutation function is called on the mutation parent. These last two functions are worth exploring in detail.

Figure 3.2 is a flow chart illustrating the algorithm of the recombination function. The shaded bubbles indicate the two possible exits. As a starting point, the first of the two parents, \texttt{ParentOne}, is copied to \texttt{Dummy}. \texttt{Dummy} serves as a test bed of different combinations
Figure 3.2: Recombination algorithm flow chart.
of genes from the two parents. The overall goal of the recombination algorithm is to replace half of the genes of Dummy with genes from ParentTwo. The place of the genes is preserved; therefore, when the algorithm is complete, the ith gene of the child, Child[i], must be set to either ParentOne[i] or ParentTwo[i]. The replacements are attempted based on a randomly generated sequence of gene indices, as opposed to swapping contiguous blocks of the two parent chromosomes. Every time a replacement is made in Dummy, the geometry of the structure is checked for boundary violations and wire-crossings in the same way as during the initialization of the population. When an invalid replacement is found, the algorithm backs out and sets a bit flag for that gene index, symbolically referred to as FailFlag. If the algorithm runs out of genes to try before reaching the half-way mark (ReplaceGoal), it starts over again with a new sequence, copying the interrupted sequence to Best if it is the longest one it has found so far. There is a maximum number of restarts that the algorithm will allow before giving up and setting the child to Best and returning to regen_pop. This number, MaxBrickWall, is set at the beginning of the recombination function to the number of ordered gene replacement sequences, $\frac{\text{GeneTotal}!}{(\text{GeneTotal}/2)!}$. GeneTotal is the number of genes in the chromosome. The reasoning here is that if it the algorithm were exhaustively searching for replacement sequences, this is the number of iterations that would be needed. Although nothing stops the algorithm from repeating an erroneous sequence, this limit is a fair estimate of how many loops the algorithm should bother with. The number of ordered replacement sequences evaluated to a number on the order 1000 for all of our experiments, and was rarely exhausted during tests of the fully debugged recombination function.

The trial-and-error approach of the mutation algorithm is similar to that of the recombination algorithm. Unlike the recombination function, the ultimate goal is to change every gene of the parent. Figure 3.3 is the simplified flow chart for the mutation function. A random gene is selected from the Dummy copy, and a random variable from a Gaussian distribution is added to it. If the mutation is valid, then the algorithm will choose another gene to mutate. If it is invalid, then it will try different mutations for up to MaxFail loops. This limit is specified in the general header file, which we set to 1000 throughout this experiment.
Up until now we have ignored the details of how a structure’s geometry is checked. The following small sample of code demonstrates how the routines that check the necessary conditions are called. The context of this code is immediately after either a mutation or a recombination gene replacement.

```c
rebuild_tree_cart(C, &Dummy);
init_lines(C);
```
BoundResult = check_bound(*C);
if(BoundResult == 0)
{
 GeomResult = check_geom(C);
 if(GeomResult == 0)
 {
 GeneFlag[r] |= DoneFlag;
 copy_tree(Dummy, &InnerBest);
 ReplaceCount++;
 }

 .
 .
 .
}

The functions `rebuild_tree_cart` and `init_lines` translate the Dummy, of type chromosome, into a Cartesian map. The function `check_bound` looks at the Cartesian map and makes sure that the antenna fits within the two-dimensional boundaries given by the user in the general header file, and that none of the nodes have crossed over a plane of symmetry. The result is stored in `BoundResult`; its value is zero if there is no boundary violation. If the boundary check passed, then the Cartesian map is scrutinized further by the function `check_geom`. Like `check_bound`, it returns zero if the structure meets its requirements.

`check_geom` checks for several problems. One is the unintentional intersection of wires. Consider the scenario shown in Figure 3.4, a close-up view of a wire antenna before and after a mutation. When a node is moved, so is every wire attached to it. Here, when Node #1 is moved, it results in the attached wires a and b crossing wire d. Besides drastically changing the electrical nature of the structure, crossing wires in this manner would result in highly inaccurate results from NEC-2. This is because NEC-2 will not allow current to flow between conductors unless the points where the conductors touch are themselves defined as wire endpoints [61]. In other words, new nodes would have to be created at the intersection points for the results to be meaningful. While not an implausible feature, the size of the chromosome structures would explode as the algorithm progressed through the generations, accumulating more and more crossings. In addition, recombination would be complicated by the fact that members of the population would each have different numbers of nodes. Therefore, our genetic algorithm does not allow new wire intersections to form.

52
Figure 3.4: Example of an invalid mutation.

A second unwanted outcome, closely related to the first, is the unlikely but serious situation of wires overlapping as a result of mutation. In that case, since the wires are parallel, there is no solution for an intersection point, so it must be addressed separately from the first criterion. Thirdly, a more subtle problem relates to the distance between wires. The NEC user manual suggests that unconnected segments remain several wire radii apart for the best accuracy. Because of this, there should be a minimal separation condition between each node and all of the wires unattached to it. Despite the simplicity with which these problems are visually demonstrated, the complexity of their analytical detection makes `check_geom` one of the longest functions of the entire program.

3.6 Implementation of the Binary Tree Antenna Species

Figure 3.5 is a diagram of a third-order binary tree illustrating how the information needed to construct the antenna is reduced to a sequence of genes. There are two implied axes of symmetry represented by dashed lines. Therefore, the entire structure is actually the union of the reflections about the vertical and horizontal axes. This way, not only is the symmetry of the dipole preserved, but the size of the encoded structure is reduced. A simple approach is taken to storing the information necessary to reconstruct the shape. Each node is assigned a pair of angles and a pair of radii, which fully describe the branch segments that grow from it. The exception to this is the first branch node, situated on top of the trunk, where only
one \((r, \theta)\) pair is needed due to \(y\)-axis symmetry. Notice that the angles are defined relative to the parent branch segment rather than a global coordinate system. Other than the height of the trunk, \texttt{TrunkHeight}, the genes are accessed by two indices — the first one giving the stage of the tree, the second giving the lateral location.

The following two data structures specify the genes of the binary tree:

```c
typedef struct {
    unsigned char R[2];
    unsigned char Theta[2];
} TreeNode;

typedef struct {
    unsigned short int Index;
    TreeNode **BT;
    unsigned char TrunkHeight;
} TreeChrom;
```

Together, \texttt{TrunkHeight} and the array \texttt{BT} contain all the genes describing the geometry.
of the binary tree. The memory that BT references is allocated during init_pop; the amount
given for each “row” of BT is determined by the number of branching levels specified by the
user. An Mth order binary tree, $M \geq 0$, has $2^M - 1$ (r, θ) pairs, which results in a total
of $2^{M+1} - 1$ genes when the trunk height is counted. Through most of the experiment, a
third-order binary tree was chosen to be optimized (15 genes), as a compromise between the
design flexibility offered by many branch levels and the prohibitive cost of manufacturing a
more complex shape. Each θ has a range of $(0, \pi)$, and each r has a range of $[R_{\text{MIN}}, R_{\text{MAX}}]$, where R_{MIN} and R_{MAX} are defined in the input header file. The actual geometric values of r
and θ are each mapped to a 7-bit value with a range of $[0,127]$, stored in variables of type
unsigned char.

Chapter 4

Results and Analysis

4.1 Optimizer Parameters

Using our genetic algorithm, we sought to minimize the band-averaged $\frac{T_{LNA}}{T_{sys}}$ of the antenna species under consideration. In addition to the third-order binary tree, we optimized the dimensions of the bow-tie as a check of the functionality of the genetic algorithm. The electromagnetic simulation parameters chosen for these trials are listed in Table 4.1. All of these are specified in the NEC-2 input files generated by the algorithm.

The discussion on the effect of structure specification on numerical accuracy in the NEC manual was taken into account when choosing the simulation wire radius and the segmentation [61]. The length of the segments composing the wires, δ, has minimum and maximum

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Radius</td>
<td>1 mm</td>
</tr>
<tr>
<td>Wire Segment Length</td>
<td>2 cm</td>
</tr>
<tr>
<td>Start Frequency</td>
<td>75 MHz</td>
</tr>
<tr>
<td>End Frequency</td>
<td>300 MHz</td>
</tr>
<tr>
<td>Frequency Resolution</td>
<td>5 MHz</td>
</tr>
</tbody>
</table>

Table 4.1: Electromagnetic simulation parameters used by the optimizer.
recommended values based on the wavelengths over which the structure is excited. The manual urges the user to observe the range $10^{-3} \lambda_{\text{max}} < \delta < 0.1 \lambda_{\text{min}}$. Considering the frequency range $[75, 300]$ MHz, this implies that we should have $0.004 \text{ m} < \delta < 0.1 \text{ m}$. We wanted the optimizer to have the ability to consider features on the scale of centimeters. However, the execution time increases dramatically for small segment sizes. Empirically, we found that the NEC-2 execution time was proportional to the cube of the inverse of the segment length. Therefore, as a compromise between speed and design flexibility we settled on a segment length of 2 cm.

The choice of wire radius was dependent on the choice of segment length; the NEC manual states that a high ratio of segment length to wire radius is beneficial to the accuracy of the results, and that a ratio $\delta/r \sim 10$ is sufficient. However, as discussed in Section 2.2, we found that the solutions for thick wire (1 cm radius) antennas were not robust to variations in segmentation, even when this ratio was respected. Consequently, we used a 1 mm radius throughout our experiment. Although in practice a larger wire radius would be used, we reasoned that the effect of wire radius on T_{LNA} would be systematic for a given antenna species.

Originally we intended to use a relatively coarse frequency sampling during the evaluation of the antennas: 11 points spaced 22.5 MHz apart. However, during early runs we found narrowband features in the impedance responses of some of the algorithm’s offspring, whose alignment could easily throw the optimization off course. Therefore, we decreased the frequency resolution to 5 MHz, resulting in 46 simulation points in total. Not all features can be satisfactorily sampled for some antennas, but at least their presence is immediately evident when examining the results. Fortunately, the final metric we employed did not propagate antennas with such narrowband response features.

The overall parameters of the genetic algorithm used during the final trials are shown in Table 4.2. As stated before, the metric used in sorting the offspring is their average $\frac{T_{LNA}}{T_{sys}}$. To obtain the metric, the algorithm first halves the antenna impedance read from the nec2cSilent output file, because of the differential pair configuration of the LNA (see Section
Table 4.2: Genetic algorithm parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>$\left< \frac{\text{T}{\text{LNA}}}{\text{T}{\text{sys}}} \right>$</td>
</tr>
<tr>
<td>Population</td>
<td>100</td>
</tr>
<tr>
<td>Elite fraction</td>
<td>0.01</td>
</tr>
<tr>
<td>Recombination fraction</td>
<td>0.5</td>
</tr>
<tr>
<td>Mutation variance</td>
<td>Range/2</td>
</tr>
<tr>
<td>Bounding x</td>
<td>30 cm</td>
</tr>
<tr>
<td>Bounding y</td>
<td>30 cm</td>
</tr>
<tr>
<td>Minimum wire length</td>
<td>1 cm</td>
</tr>
<tr>
<td>Maximum wire length</td>
<td>$30\sqrt{2}$ cm</td>
</tr>
</tbody>
</table>

2.2). After using the halved impedance to solve for Γ_A by equation 1.16, the algorithm can evaluate $\frac{\text{T}_{\text{LNA}}}{\text{T}_{\text{sys}}}$ according to Equation 1.15, employing the LNA parameters listed in Table 2.2. It repeats this calculation at each of the 46 frequency points, and the metric is set to the mean, $\left< \frac{\text{T}_{\text{LNA}}}{\text{T}_{\text{sys}}} \right>$.

In a typical genetic algorithm the probability of recombination is greater than 0.9. However, we found the best performance with a relatively small recombination fraction. The recombination fraction was set to 0.5 after many experiments during the early testing stages of the algorithm, from which it became clear that without a large degree of mutation the algorithm would not converge within a reasonably small number of generations. A similarly large mutation fraction was used by J. D. Lohn et al. in the genetic synthesis of an X-band spacecraft antenna [66]. The variance of the Gaussian random variable added to the genes during mutation was set to half of the range of allowed values for the given gene. Therefore, for a gene with a range $[0,127]$ the variance of the mutation would be 64.

The bounding box for the antenna was fixed so as to emulate the area taken up by the MWA LFD bow-tie. One benefit to maintaining a small size for the dipole element of the MWA LFD tile is that it reduces mutual coupling between closely spaced antennas. Further-
more, the radiation pattern is largely determined by the size of the antenna; restricting our antennas’ size to that of the MWA LFD is the simplest way to ensure a comparable resulting radiation pattern. In summary, taking the footprint of the MWA LFD bow-tie as the upper size limit allows for relevant comparisons between the result of our genetic algorithm and the fiducial bow-tie. Due to the \(x\)- and \(y\)-axis symmetry of the dipoles in our experiment, the bounding values are specified to confine the first quadrant of the antenna to the rectangle whose opposite corners are \((0,0)\) and \((0.3\text{ m}, 0.3\text{ m})\).

4.2 Bow-tie Dipole Solution

![Figure 4.1: Bow-tie genes.](image)

As a check of the functionality of our genetic algorithm, we created a data structure along with the associated recombination and mutation functions needed to operate on a bow-tie dipole template. The small number of genes describing the bow-tie make it one of the simplest imaginable tests for our optimizer. As shown in Figure 4.1, only three genes are needed to fully describe the bow-tie once \(x\)- and \(y\)-axis symmetry are granted: the length of the bottom portion of the trunk, \(l_0\), the length of the top portion of the trunk, \(l_1\), and the half-angle of the “fan”, \(\phi\).
Given the parameters in Table 4.2, the optimizer converges on a solution within 20 generations. We loosely define convergence as the point where the metric ceases to improve by any amount between as many as 10 successive generations. Qualitatively, all members of a population that has reached convergence are visually identical except for minor variations caused by mutation.

Figure 4.2: Bow-tie champion.

Figure 4.2 is our champion bow-tie dipole. It is identical to the bow-tie used by the MWA LFD, and therefore proves that our algorithm is successful at optimizing basic designs. The corners of the champion’s quadrant triangle are as close as possible to the nearest corresponding corners of the bounding box. Therefore, referring to Figure 4.1, l_1 is maximized, l_0 is minimized, and ϕ converges on a value such that the diagonal wire touches the corner of the bounding box opposite the origin of the antenna. Alternatively, the best performing bow-tie is the one with the largest area contained within the quadrant triangle. This is not surprising, because it maximizes the electrical length of the structure, thereby moving the first resonance closer to the low end of the frequency band where the impedance match is poorest.

As a comparison, consider what happens when all of the dimensions of the champion are scaled down by a factor of $3/4$. Therefore, the total length is scaled down from 60 cm to 45 cm. Figure 4.3 compares $\frac{L_{\text{sys}}}{L_{\text{sys, opt}}}$ of the full-size bow-tie with the shrunken bow-tie.
The 60 cm bow-tie results in a minimum system temperature at 150 MHz. This is not surprising when we consider the value of Γ_{opt}. For a 75 Ω characteristic impedance, Γ_{opt} corresponds to $Z_{opt} = 54 + j24$, not far from the impedance of the bow-tie at 150 MHz, as shown in Figure 2.4. Based on the scalability of solutions to Maxwell’s equations we would expect the smaller bow-tie to show the same feature in its response at a frequency of about $\frac{4}{3}(150 \text{ MHz}) = 200 \text{ MHz}$, which it does.

Figure 4.3: $T_{\text{LNA}}/T_{\text{sys}}$ comparison between full and scaled-down bow-tie.

4.3 Binary Tree Dipole Solution

<table>
<thead>
<tr>
<th>Antenna</th>
<th>$\langle T_{\text{LNA}}/T_{\text{sys}} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary tree</td>
<td>0.167</td>
</tr>
<tr>
<td>Bow-tie</td>
<td>0.196</td>
</tr>
</tbody>
</table>

Table 4.3: $\langle T_{\text{LNA}}/T_{\text{sys}} \rangle$ comparison between binary tree champion and bow-tie.
On repeated trials, our binary tree optimization converged to similar, but not identical geometries. We ran five trials using the parameters in Table 4.2, each run being allowed 200 generations before recording a champion. The antenna geometry with the lowest (best) metric is shown in Figure 4.4. A comparison between the metrics of the binary tree and the bow-tie is listed in Table 4.3.

As compared to the bow-tie, the binary tree reduces the band-averaged $T_{\text{LNA}}/T_{\text{sys}}$ from 0.196 to 0.167, an improvement of 15%. To verify the robustness of our solution, we doubled the segmentation density. The metric changed to 0.166, showing that the result is insensitive to segmentation. As another check, we re-ran the antenna simulation with NEC-2’s optional higher accuracy kernel, the extended thin-wire kernel, and again replicated the response of the original champion. This is not surprising because the extended thin-wire kernel is only expected to be necessary for structures where the ratio of segment length to radius is small (our δ/r is 20).

In Figure 4.5, it is clear that while the bow-tie outperforms the binary tree at the low end
of the band, at the high end of the band, the binary tree contributes substantially less to the system temperature. The cause of the difference between the T_{LNA}/T_{sys} curves is understood by comparing the impedance responses of the respective antennas. The resistance plot shows that the binary tree has a similar response shape, but shifted to lower frequencies, and with a noticeably reduced peak. The comparably small resistance at low frequencies is partially responsible for higher T_{LNA} on this side of the band. The other contribution to this is the binary tree’s larger low-frequency capacitance, as revealed in the reactance comparison. Both of these features in the binary tree’s impedance response result in an increase in $|\Gamma_A - \Gamma_{opt}|$.

At high frequencies the response of the binary tree is radically different from that of the bow-tie. Its reactance shows a dip centered around 250 MHz. This feature keeps the reactance closer to its optimum value, 24 Ω. The fact that the resistance of the binary tree peaks at lower value and a lower frequency also aids the system temperature at the high end of the band. In the range [250, 300] MHz, instead of the bow-tie’s very large positive values (> 400 Ω), the resistance curve is able to remain nearer to its optimum value, 54 Ω.

![Figure 4.5: T_{LNA}/T_{sys} comparison between binary tree champion and bow-tie.](image-url)
The geometry of the binary-tree champion, displayed in Figure 4.4, is worth analyzing. Most conspicuously, the algorithm has formed the outer branch tips into a structure that recalls the profile of a parallel plate capacitor, blown up in Figure 4.7. Given the combination of the branching nature of the binary tree and its two axes of symmetry, finding pairs of roughly parallel wire segments spanning the feed is not surprising. Such wire segment pairs, having locally constant and opposite electric potentials, will necessarily possess a capacitance. However, the fact that the algorithm has effectively minimized the separation between this set of branch tips and its mirrored image suggests that the capacitance has a dominant role in the evolution of their positioning.

For an antenna there exists no method to isolate the contribution of various sections of the structure to the frequency response, even in an approximate manner as is typically done with linear circuits composed of discrete components. However, we can make an order of magnitude calculation to determine if the branch tip capacitor described above could play a significant role in the response of the antenna. The capacitance per unit length of two parallel wires is given by

\[
C/l = \frac{\pi \varepsilon_0}{\cosh^{-1}(D/2a)} \quad [67].
\]

(4.1)

\(\varepsilon_0\) is the permittivity of free space, \(D\) is the separation between the wires, and \(a\) is the radius of the wires. Based on the geometry of the binary tree, we set \(a = 1\) mm and \(D = 2\) cm. The two capacitors on each side of the dipole axis are effectively in parallel. Therefore, using the sum of their lengths, 10 cm, we arrive at \(C \simeq 1\) pF.

The magnitude of a capacitor’s impedance equals that of a resistor of value \(R\) at an angular frequency \(\omega_c = 1/(RC)\). If we presuppose that this frequency occurs around 250 MHz, and set \(R\) to its value at this frequency, 200 Ω, then we have a capacitance of 3 pF. Because this is within reasonable agreement with the capacitance we determined through physical arguments, it is plausible for this branch tip capacitor to play a significant role in the shape of the response of the binary tree at the high end of the frequency band. We made another check of this hypothesis by observing how the response changes when the separation between opposite sides of the capacitor is increased from 2 cm to 4 cm. Increasing \(D\) should
decrease the capacitance, which in turn moves ω_c to a higher frequency. Figure 4.8 compares the reactance for each case. As expected, the reactance trough shifts to a higher frequency.

The last geometrical features of the binary tree champion we consider are the inner branch tips on the far ends of the dipole. The algorithm has pushed them flat against the boundary, and extended them inwards as far as possible without violating a hard-coded minimum distance to the dipole axis. In hindsight, the geometry checking function of the algorithm (\texttt{check geom}, described in Section 3.5) should have been designed so as to allow the wires to terminate on a symmetry axis. This would have allowed these inner branch tips to connect across the dipole axis. Fortunately, this variation on the champion is very simple to implement, displayed in Figure 4.9. The response of this simplified antenna is identical to the champion we derived it from. Connecting the inner branch tips also has the benefit of adding stability to the structure, an important consideration if it were to be used in the field.

Although the impedance response of the binary tree is favorable, its usefulness also depends on its power pattern, a characteristic that our optimizer did not address. Fortunately, the power pattern of the binary tree turns out to be similar to that of the bow-tie. In Figure 4.10 and Figure 4.11 we compare two orthogonal cross-sections between the antennas at 150 MHz and 250 MHz. The left-hand panels show the power pattern in the E-plane, which is the plane that is orthogonal to the plane of the antenna layout, and bisects the antenna along the dipole axis. The H-plane is orthogonal to the dipole axis. In all cases, the zenith is oriented upwards. It is apparent from these plots that the binary tree has slightly narrower beamwidth. Table 4.4 lists the 3 dB zenith angles of the E-plane power patterns.

<table>
<thead>
<tr>
<th></th>
<th>150 MHz</th>
<th>250 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary tree</td>
<td>45°</td>
<td>43°</td>
</tr>
<tr>
<td>Bow-tie</td>
<td>47°</td>
<td>51°</td>
</tr>
</tbody>
</table>

Table 4.4: E-plane 3 dB zenith angle comparison between binary tree and bow-tie.

The bow-tie has the preferable beam pattern, possessing a slightly wider 3 dB beamwidth.
A wider beamwidth allows the interferometer to survey a greater area of the sky at once. On the other hand, it also means that there is less rejection of man-made interference, which is likely to arrive from large zenith angles. Because of this interference, the ideal beam would be a step function that becomes null at zenith angles greater than 60° [43].
Figure 4.6: Impedance response comparison between binary tree champion and bow-tie.
Figure 4.7: Close-up view of an outer branch tip capacitor.

Figure 4.8: Reactance of binary tree champion with modified branch tip capacitor.
Figure 4.9: Simplified binary tree champion with connected inner branch tips.

Figure 4.10: Normalized E-plane and H-plane power patterns at 150 MHz.
Figure 4.11: Normalized E-plane and H-plane power patterns at 250 MHz.
4.4 Conclusions

Our binary tree solution demonstrates the efficacy of using a genetic algorithm to optimize the geometry of an antenna over a wide range of frequencies. Under idealized conditions, our algorithm succeeded in improving on the overall noise match of the fiducial broadband dipole, the MWA LFD bow-tie. Unfortunately, the binary tree does not decrease the system temperature at the low end of the frequency band, which contains the main scientific objective of the MWA, EoR observations. Recall that the redshifted 21 cm signal appears at frequencies under 200 MHz for $z > 6$. Nevertheless, numerous other scientific objectives are aided by the improved noise match at the high frequency end. These include surveys for radio transients from high energy astrophysical phenomena, observations of pulsars and the interstellar medium, and cosmic ray air shower detections [4].

In our simulations the antenna exists in free space, with no scattering off of surrounding surfaces to perturb the response. The impact of structures in the vicinity of the antenna, including the ground screen and the surrounding tile elements, is the largest unknown characteristic of our binary tree champion. More comprehensive simulations that determine the radiation pattern and the impedance response while taking these factors into account could improve the confidence of the genetic algorithm solution. Ultimately, the evaluation would be best carried out with field measurements of a prototype.

Another factor we have neglected in our comparison is the ease of construction. The bow-tie is clearly easier to produce, consisting solely of equally-sized 45° triangles. On the other hand, the binary tree’s outer branch tips are unterminated wires, requiring more careful fabrication. The features of the branch tip capacitors are small, of order 1 cm, and likely the most difficult part to reproduce precisely. Furthermore, as demonstrated in Figure 4.8, the performance of the binary tree is highly sensitive to the positioning of these branch tips. Here, a mere 2 cm shift in the placement resulted in a substantially different impedance response. The fine-tuned nature of the branch tip capacitors may be the largest flaw in the design of the binary tree champion. However, if construction obstacles could be overcome, they pose a dramatic improvement at the high frequency end of the operation band.
The most intriguing question that our results raise is whether or not branch tip capacitors could be added to the bow-tie shape to provide the same benefits as they do to the binary tree. Extensions to our genetic algorithm could be developed to optimize a bow-tie/tree hybrid species. Conceivably, this hybrid could offer the best of both worlds — the low end noise match of the bow-tie and the high end noise match of the binary tree.

Lastly, it is interesting to note that the solutions of our genetic algorithm possess no fractal properties. This is not surprising, because Gianvittorio’s fractal binary trees showed no bandwidth improvement in this regime of electrical length. However, unlike in his experiment, we did not form our trees by ad hoc prescription of branching angle and scaling factor. Instead, we left the entire parameter space open for unbiased exploration. Yet, no tree with the self-scaling regularity of a fractal evolved out of our populations. Therefore, it is a compelling and more generalized reinforcement of his demonstration that regular fractal trees do not offer bandwidth improvement outside of the small antenna limit.

The results of our experiment, and the antenna optimizer we created along the way will prove useful in the final design stages of the Mileura Wide Field array, and possibly other instruments of its kind. Binary trees are just one of countless templates that our algorithm can be applied to; other antenna species, particularly a hybrid of the bow-tie and the binary tree, could offer even more promising properties.
Bibliography

