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Abstract

Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center, we present an update
of the main results from this unique data set: a measurement of mass and distance to Sgr A*. Our progress is not
only due to the eight-year increase in time base, but also to the improved definition of the coordinate system. The
star S2 continues to yield the best constraints on the mass of and distance to Sgr A*; the statistical errors of
0.13 x 10% M., and 0.12 kpc have halved compared to the previous study. The S2 orbit fit is robust and does not
need any prior information. Using coordinate system priors, the star S1 also yields tight constraints on mass and
distance. For a combined orbit fit, we use 17 stars, which yields our current best estimates for mass and distance:
M = 4.28 £ 0.10}q;. & 0.21]gys x 10°M. and Ry = 8.32 =+ 0.07|w. =+ 0.14|sys kpc. These numbers are in
agreement with the recent determination of R, from the statistical cluster parallax. The positions of the mass, of the
near-infrared flares from Sgr A*, and of the radio source Sgr A* agree to within 1 mas. In total, we have
determined orbits for 40 stars so far, a sample which consists of 32 stars with randomly oriented orbits and a
thermal eccentricity distribution, plus eight stars that we can explicitly show are members of the clockwise disk of
young stars, and which have lower-eccentricity orbits.
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1. Introduction

The near-infrared regime is a sweet spot for studying the
gravitational potential in the Galactic Center. To measure the
latter, one would like to have as high a resolution as possible,
and have access to the emission of objects compact and bright
enough that they can serve as test particles for the potential.
The optimum band is around 2 um wavelength, where the
extinction screen amounts to less than 3 mag (e.g., Nishiyama
et al. 2009; Fritz et al. 2011), and where adaptive optics at 8 m
class telescopes is performing well for typical atmospheric
conditions. The intrinsic resolution of around 50 mas allows us
to measure stellar orbits with semimajor axes of similar size,
corresponding to orbital periods around a decade for a black
hole of four million solar masses at 8 kpc distance.

Twenty-five years of near-infrared observations of the
Galactic Center have shown that a wealth of fundamental
astrophysical and physical questions can be addressed with
these measurements, ranging from star formation, to stellar
dynamics, to testing general relativity (Genzel et al. 2010). The
outstanding, main result of these observations is that they
provide direct and tight constraints on the nature of Sgr A™:
This is the massive black hole (MBH) at the center of the Milky
Way. The key to this result is that one can measure the mass of
Sgr A* by tracing individual stellar orbits around it. If a
sufficiently large part of an orbit is sampled, one can deduce
information on the potential through which the star is moving.
In particular, one can determine the central mass and the
distance to it. Due to its proximity, the Galactic Center is the
only galactic nucleus where such an experiment is currently
feasible.

A geometric determination of the distance to the Galactic
Center, Ry, is important for many branches of astronomy. Ry is
one of the fundamental parameters of any model of the Milky
Way, and its value determines mass and size of the Galaxy.
This ties Ry into the cosmological distance ladder, since
galactic variables serve as zero point for the period-luminosity
relations determined usually in the Large Magellanic Cloud.
The mass of the MBH is equally important. Using this value,
one can place the Milky Way onto scaling relations (Kormendy
& Ho 2013). Knowing the mass of and distance to Sgr A* is the
reason why the Galactic Center is a unique testbed concerning
MBHs and their vicinities for numerous models in many
branches of astrophysics (Yuan & Narayan 2014). The Milky
Way also serves as a check for mass measurements in other
galaxies, since the true black hole mass is known and one can
simulate observations at lower resolution (Feldmeier
et al. 2014).

The most profound result of the orbital work is the proof of
existence of astrophysical MBHs. This opens up a new route
for testing general relativity, at a mass scale and a field
curvature that have not been accessible so far. Since the
fundamental parameters are known for Sgr A*, one can think of
more ambitious experiments using the black hole. Most
notably, in the near future two observations might become
feasible. (i) Using the motions of stars and/or that of plasma
radiating very close to the event horizon, one might be able to
measure the spin of the black hole. The instrumental route to
that goal is near-infrared interferometry (Eisenhauer
et al. 2011). (ii) A global radio-interferometric array operating
at around 1 mm should be able to resolve Sgr A%, ie., to deliver
an actual image of the black hole’s shadow (Luminet 1979;
Falcke et al. 2000; Doeleman et al. 2008). Additionally, the
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Figure 1. Mock image of the central arcsecond for our reference epoch 2009.0,
constructed from the measured motions and magnitudes of the stars, assuming
a point-spread function size and pixel sampling as in our NACO data. Stars
with spectral identification have colored labels: blue for early-type stars (Br-y
absorption line detected) and red for late-type stars (CO band heads detected).
The yellow cross denotes the position of Sgr A*. For a wider view see
Figure 15.

most stringent tests of general relativity would be possible if a
pulsar representing a perfect clock in a short-period orbit
around Sgr A* were found (Psaltis et al. 2016).

Here, we report on updates to our ongoing, long-term
program of monitoring stellar orbits around Sgr A*. The first
orbit determination dates back to 2002 (Schodel et al. 2002;
Ghez et al. 2003). A few years later, orbits for a handful of stars
had been determined (Eisenhauer et al. 2005; Ghez et al. 2005),
and after a few more years, the number of known orbits
exceeded 20 (Gillessen et al. 2009b). The number of known
orbits has now risen to around 40, and both statistical and
systematic errors of our measurements are much reduced
compared to previous measurements.

2. Data

This work is an update and improvement over our previous
orbital study (Gillessen et al. 2009b). The two main
improvements are stated here.

1. Since the previous work we have added eight more years
of data, using the adaptive optics (AO) imager NACO on
the VLT (Lenzen et al. 1998; Rousset et al. 1998) and the
AO-assisted integral field spectrograph SINFONI
(Bonnet 2003; Eisenhauer et al. 2003). This extends our
time base from 17 to 25 years for the imaging and from
five to 13 years for the spectroscopy. We add (in the best
cases) 78 epochs of imaging and 19 epochs of
spectroscopy.

2. We implement the improved reference frame described in
Plewa et al. (2015). This greatly improves our prior
knowledge, where we expect an orbit fit to reconstruct the
mass responsible for the orbital motion of the S-stars. The
new calibration links to the International Celestial
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Reference Frame (ICRF) in a two-step procedure, and
compared to our previous work does not rely on the
assumption that the mean motion of a large sample of
stars observed around Sgr A” is zero.

The other steps of the analysis are identical, and we refer the
reader to Gillessen et al. (2009b) for more details. In particular,
the following critical issues are treated as before.

1. The assignment of statistical errors to individual data
points.

2. The relative weight between the earlier Speckle data
(1992-2001, Hofmann et al. 1992) and the AO data is
unchanged. We weigh down the NACO-based astro-
metric data by a global factor 1.42, determined in
Gillessen et al. (2009b) as the factor which makes the
noise in the AO data match the statistical error estimates.

3. The errors assigned to S2 in 2002 are identical to those
derived in the previous work. S2 may have been confused
and its position perturbed in 2002, when the star passed
the pericenter of its orbit.

Our imaging data set contains an interruption. During 2014
and in spring 2015, NACO was not available at the VLT,
resulting in significant gaps in our time series. In summer 2015
NACO resumed operation (now at UT1, no longer at UT4).
The data obtained after that (ten epochs) show that we can
reconstruct the stellar positions to the same level of precision as
before. Also, there is no systematic mismatch between the
positions obtained before and after. We therefore do not need to
apply any corrections related to the interruption.

For orbits fits using a combined data set of both VLT- and
Keck-based observations, we replace the data points of Ghez
et al. (2008) by the newer publication from the same team of
Boehle et al. (2016). Figure 1 gives an overview of the crowded
stellar field in the central arcsecond.

3. The Gravitational Potential in the Galactic Center
3.1. Orbit Fitting

Orbit fitting has a relatively large number of free parameters.
While in its most simple form the potential has only one free
physical parameter (the central mass M), we do not know
a priori where the mass is located and how it moves. Hence six
additional parameters need to be determined simultaneously:
the distance to the mass Ry, its position on the sky («, ¢) and its
motion (V,, Vs, ;). Acceleration terms are not needed at the
current level of precision (Reid & Brunthaler 2004). Further-
more, the orbit of the star that is probing the potential needs to
be determined at the same time. The orbit parameters are
essentially the initial conditions for its motion in the potential
(three position variables and three velocity variables), which
conventionally are expressed in terms of the classical orbital
elements (a, e, i, (), w, tp).* Therefore the most simple orbit fit
has already 13 free parameters. For n stars, one has 7 + 6 x n
free parameters.

For the six coordinate system parameters of the potential we
have prior knowledge. Ry has been determined in multiple
ways; for a recent review see Bland-Hawthom & Gerhard
(2016), who conclude Ry = 8.2 + 0.1 kpc from averaging the

4 Here, ais the semimajor axis of the orbit, e the eccentricity, i the inclination,
(2 the position angle of the ascending node, w the longitude of the pericenter,
and tp the epoch of pericenter passage.
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results of many individual determinations. As Ry is one of the
parameters we wish to determine, we do not use the prior
information for it.

Since we cormrect our radial velocity measurements to the
local standard of rest (LSR), and the expected motion of Sgr A*
is very small (below 1 kmsﬁl, Reid & Brunthaler 2004) we
expect v, = 0, with an gncertainty due to the uncertainty of the
LSR of around 5 kms" . For the position on the sky and the
motion in the plane of the sky of Sgr A*, we can adopt the
limits from Plewa et al. (2015): (o, 6) = (0, 0) £ (0.2, 0.2)
mas at our refer%nce epoch 2009.0, and (v,, vs) = (0, 0) £
(0.1,0.1) masyr"'. These priors only show very small
covariances, which we neglect in our analysis.

We use a fitting code we developed in Mathematica (Wolfram
Research, Inc. 2016), which calculates the positions and velocities
by explicitly integrating the orbits, and then uses the built-in
minimization routines to find the best fitting parameters. These
routines are based on standard techniques such as quasi-Newton
methods, steepest gradient search, or the Levenberg—Marquardt
algorithm. Usually, we apply different search algorithms
iteratively, until none is able to improve the minimum further.
Our code also allows the use of (or omission of) prior information
for the parameters to be solved for. We can either obtain the
parameter errors from the inverse of the correlation matrix or from
the parameter distributions as output by a Markov chain. Our
fitting routine also allows fitting for more complicated orbit
models, and in particular we can include relativistic corrections.
We have implemented the potential of the Schwarzschild metric
(Will 2008), the gravitational redshift, the transverse Doppler
effect, and the Roemer time delay (Zucker et al. 2006). Also, it is
possible to integrate the orbits in the potential of an extended mass
distribution.

We explicitly tested our implementation of the Schwarzschild
precession term. We fitted a simulated, relativistic orbit of the
star S2 (i.e., in the weak-field limit) for a full orbital period (from
t=0 to t=T), which yielded back the parameters put into the
simulation. Simulating the same orbit from t = T to t = 2T and
fitting it yielded back these parameters again, except for w (the
longitude of periastron describing the orientation of the ellipse in
its plane), which had changed by the amount expected from the
formula

GM 1
Aw = 61— ——. 1
: ¢z a(l —é?) M

3.2. The Potential Based on S2 Only

Most of our knowledge of the MBH’s potential is due to a
single star, S2, which happens to be comparably bright
(mg ~ 14) and orbits Sgr A® on a short-period orbit
(P = 16 years). It is the brightest star for which we can
determine an orbit and hence is less prone to errors due to
confusion than all other stars. Its orbital period of around 16
years is the second shortest known. We investigate the potential
we can derive from S2 alone before including data from more
stars.

We first fit the orbit of S2 without using any coordinate
system prior information (row 1 in Table 1). The 2D coordinate
system parameters from the fit are consistent with what we
expect from the priors, and we can repeat the fit using the priors
as additional constraints (row 2). We also repeat the fit from
Gillessen et al. (2009a) in row 3, which includes into our data
set the publicly available S2 data from Boehle et al. (2016).
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This comes at the cost of having to solve for four additional
parameters, namely the difference between the two reference
frames. One can see from the parameter errors that the
additional information by including the Keck data is countered
by the inclusion of the four additional free parameters. The
combination of the two data sets therefore does not constrain
the potential further in a substantial way, although one might
have expected that the Keck data would help for the years
1995-2001, where our data set is based on lower Strehl ratio
Speckle-imaging at the smaller 3.6m ESO NTT on La Silla.
Figure 2 shows the positional and velocity data and the best-
fitting orbit, for the case where the priors and the Keck data
have been used in addition to our raw data set. We refer to it as
the “combined” fit. It constitutes our best estimate for the S2
orbit and the corresponding potential:

M =435+ 0.13 x 106 M.
Ro=8.33 + 0.12 kpe.

These errors are only the formal fit errors, the additional
systematic errors for S2 are determined in Section 3.2.3. As a
cross check, we also fit the combined S2 data set without using
any priors (row 4 in Table 1). Again, the resulting parameters
do not deviate significantly between a fit using the priors
(row 3) or not (row 4). We conclude that the inclusion of the
Keck data does not introduce any significant systematic errors
related to the difference in coordinate systems.

After using a classical minimization routine, we also run a
Markov chain Monte Carlo (MCMC) routine, which we started
at the previously determined best-fit position and which we ran
for at least 2 x 105 steps. Since the posterior distribution is
compact, this approach is sufficient. As expected, the chain
never hit any point in parameter space with a smaller x2. The
posterior distribution has more information about the parameter
uncertainties. Table 1 also gives the associated errors. The
parameter uncertainties obtained from the formal error matrix
and from the MCMC agree. In Figure 3 we show the marginal
posterior distribution of Ry and Mygy for the fits given in rows
1-3 of Table 1. A more complete view of the chain output is
given in the Appendix in Figure 14, where we show the two-
dimensional projections for the 13 parameters (excluding the
four needed to describe the coordinate system mismatch
between our data and the Keck data). The figure shows
explicitly that the posterior distribution is compact, and that all
parameters are well-constrained.

The mass of and distance to Sgr A® are highly correlated
parameters. Using the S2 data, for a given distance, the
corresponding mass is

M (R) = (4.005 £ 0.033) x 10°M., x (Ro/8 kpc)>®. (2)

The mass uncertainty for a given distance is below 1%.

The fit of the MPE-only data set without priors in row 1 of
Table 1 yields a somewhat large radial velocity of the central
mass of 28 kms" '. This might be connected to a systematic
error of measuring radial velocities, see Section 3.2.3. In order
to decouple the fit from such a bias, but still being able to profit
from the 2D priors, we have repeated the fit with 2D priors
only. This fit yields again a systemic radial velocity of around
25kms" . The distance estimate is Ry = 8.35 kpc then, very
close to what our fiducial fit yields (row 3).

We also tested whether allowing for a constant rotation speed
of the coordinate system would make a difference in the fits.
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Table 1
The Gravitational Potential Based on Orbital Fitting
# Data Priors  Type Ry Mgy «a o Vo g Vs a1 vz('_l r.?
(kpc) (10°M..) (mas) (mas) (pasyr") (pasyr™") (kms™")
1 S2, VLT  none  Kepl 8.17 +£020 4.25 + 020 0234039 $2.10 + 0.61 88 + 40 2+ 63 283+ 7.0 1.19
+0.17 +0.18 +0.39 +0.53 +41 +67 +6.4
MCMC errors 023 022 040 0.69 40 61 8.2
2 S2, VLT 2D,v, Kepl 8.13+015 4.10+016 [£031+034 1.29 + 0.44 78 + 37 126 + 47 89+40 128
MCMC errors +0.13 +0.14 +0.34 +043 +37 +47 +39
0.16 0.16 034 045 37 46 4.0
3 S2,comb. 2D,v, Kepl. 833+0.12 4.35+0.13 096 +£021 H128+032 H45+23 120 + 33 50+£36 148
+0.12 +0.13 +0.21 +0.32 134 +23 +3.5
MCMC errors 0.12 0.14 0.21 034 33 23 37
A sys. 081 4+021 083 +£021  F85+20 462 + 21
+0.22 +0.22 +19 +21
MCMC errors 020 _ 022 21 22
4  S2,comb. none Kepl 8.17+£0.15 4.30 £ 0.15 149+ 024 241 +049 E34+24 24 + 44 115+54 141
+0.15 +0.16 +0.23 +0.49 +25 144 +5.5
MCMC errors 0.15 0.15 0.25 049 24 45 55
A sys. 050 +022 #1.06+023 f114+21 485 + 22
+0.20 +0.23 +22 +22
MCMC errors 03 023 20 2
5 S1 2D, v, Kepl. 847 +0.18 4.45+028 [089+127 H0.19+ 131 80 + 139 17+ 143 Hoa+74 221
6 S9 2D, v, Kepl. 8.08+078 4.04+126 021 + 1.51 0.10 + 152  H38+164  H17+ 165 00+83 273
7 S13 2D, v, Kepl 874+097 484+159 (0224260 2224257 86+291 H296+277 H3.1+155 106
8  S2,comb. 2D,v. GR 8414013 443+0.14 058+021 H131+033 H16+23 120 + 34 15436 147
9 Multi 2D,5  Kepl. 8324007 084 R R008+037 H0.89 +031 39 + 41 584 37 142+36 098
+0.16 +0.25 +0.65 +0.64 +0.69 +0.65 37
10 w/oS2 2D, v,  Kepl 8.19 0.11 4.08 0.14 055 0.62 —0.26 060 —83 073 22 0.70 7.0 36 097

Note. The first four fits use the S2 data and differ in whether or not the Keck data are used, and whether or not we include coordinate system priors in the fit. For each
fit we report the best-fitting parameters and the associated uncertainties as obtained by the error matrix. For S2, we also report the uncertainties as obtained by running
a Markov chain Monte Carlo routine. The 1 o error intervals are constructed as symmetric confidence intervals around the best-fitting value. Rows 5 to 7 give the same
parameters as obtained from fitting S1, S9, and S13 individually. For these stars, the errors have been scaled up by the square root of the reduced y? (last column),
corresponding to a rescaling such that reduced y2 = 1. Row 8 presents a relativistic fit for the combined S2 data. Row 9 (bold) gives the multi-star fit using 17 stars
simultaneously. The errors are taken from the Markov chain, and the reduced 2 is smaller than 1 since before starting the fit all stars have been individually rescaled
such that their respective reduced x2 = 1. This is our best fit overall. Row 10 is the result of the multi-star fit excluding S2.

Using the combined S2 data set, the parameter corresponding to
rotation has its best-fit value at (—0.006 + 0.017)° yr@l, not
significantly deviating from zero. The distance estimate is
basically unchanged: Ry = 8.34 kpc. We conclude that we can
neglect rotation. Furthermore, from the definition of the
coordinate s?'stem we can set a prior on its rotation of
0200004 yrE (Plewa et al. 2015), which is essentially the same
as fixing it at zero. For simplicity we do the latter.

3.2.1. Relativistic Fit

Using a general relativistic orbit model, the S2 based mass
and distance are

M =443 £+ 0.14 x 10°M.
Ry =8.41 + 0.13 kpc.

We note that the values increase moderately compared to the
respective Keplerian fits. It was already noted by Zucker et al.
(2006) that the Keplerian fit yields biased parameter estimates
for a relativistic orbit, although the size (and sign) of these
biases has not yet been studied systematically.

In the orbit fitting tool, we can check the effect of the four
relativistic corrections implemented independently. After
rescaling the error bars such that the Keplerian (combined)
S2 fit yields a reduced y? of 1, we tested models with the
different effects, or combination of those, one by one. This
yielded reduced Y2 values between ~0.987 and ~1.020. For
the 414 degrees of freedom a lo-significant deviation would be
reached for Ax2, = \/2/dof = 0.070 (Andrae et al. 2010).
Hence, we cannot distinguish between any of these models, and
cannot detect any of the leading-order relativistic effects:

Schwarzschild precession, gravitational redshift, relativistic
Doppler effect, and Roemer delay. The Keplerian description
continues to suffice.

3.2.2. Limits on an Extended Mass Component

Fitting the combined S2 data using an additional, extended
mass component with a Plummer profile

3 _ar 5/2
p(r) = — Mex 1, ’%g
8 T

with a scale radius of r; = 0”4 yields that —0.4 + 1.2% of the
mass of the MBH is in the extended component, where we have
allowed M., to also take negative values. This comresponds to
—0.3 £ 0.7% between pericenter and apocenter of the S2 orbit,
the radial range where our data are sensitive to an additional
mass component. Changing r, to 07125 yields a very similar
result, with —0.5 £ 0.8% being in the extended component or
—0.3 £ 0.5% inside the S2 orbit. We also used a power-law
density profile with p(r) o r~7/4, making the extended mass
component inside the S2 orbit —0.5 + 0.8%.

We conclude that our data are consistent with a pure point
mass, and can place a conservative upper limit on a possible
extended component inside the S2 orbit at 1% of the mass of
the MBH.

3

3.2.3. Systematic Errors for S2

A main source of uncertainty in Gillessen et al. (2009b) was
the weight of the S2 data in 2002. A fit using S2 only leaving
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Figure 2. Orbit of the star S2. Left: the measured positions plotted in the plane of the sky. The blue data are from the VLT (before 2002: from the NTT), and the red
data are from Boehle et al. (2016) corrected for the difference in reference coordinate system. The gray data points are positions at which flares have been recorded.
The black ellipse is the best-fitting orbit, and the position of the mass is denoted by the black circle. Note that the fitting procedure matches the functions «(f) and (1),
i.e., it does not only match the positions in the plane of the sky but rather also in time. The plotted ellipse does not close, since there is a small residual drift motion of
the fitted mass in the reference frame. The physical model is purely Keplerian. Right: the measured radial velocities as a function of time. The same best-fitting orbit as

in the left panel is denoted by the black line.

out the 2002 data yielded a distance value as low as Ry = 7.4
kpc, while using the 2002 data with their full weights yielded
Ry = 8.9 kpc. The corresponding range of values of R for the
updated (combined VLT and Keck) data set now is
8.24 kpc < Ry < 8.84kpc, i.e., it has reduced by more than
a factor of 2.

The influence of individual data points on the fit result can be
checked by bootstrapping. For that we created 1000 boot-
strapped files by drawing randomly with replacement of as
many data points from a given star’s data as there are
measurements. Some data points are thus repeated in the
bootstrapped file; others are omitted. These mock data sets are
then fit in the standard way, and the distribution of best-fitting
parameters is a measure for the uncertainty in the data. Figure 4
shows in the leftmost panel the results for the (VLT-only) S2
data set. The associated error bars are +0.13 kpc for Ry and
+0.13 x 10° M, for M, i.e., comparable to the statistical fit
uncertainties. The second panel in Figure 4 shows the
combined uncertainties from bootstrapping and the Markov
chain. For that figure we assumed that the statistical fit errors at
the best-fit position are valid at each point of the bootstrap.

While we expect instrumental systematics in vy sg to average
out, the shape of the stellar absorption lines for the massive B
dwarfs might be affected by stellar winds. This results in a

systematic difference of measured radial velocity and true
radial velocity of the center of mass of the star. We estimate
that such effects could bias the measurements at the 20 km s
level. For S2, a star for which we have measured positive and
negative radial velocities, this would be absorbed into the radial
motion of the coordinate system v,, and indeed, the S2 fits
without prior information (rows 1 and 4 in Table 1) yield a
value of v, of roughly that amount.

By including the difference between the S2 fits with or
without coordinate system prior information we cover not only
the coordinate system uncertainty, but also the possible biases
due to the line shape of the absorption lines. We use the mean
of the half difference between the fits in rows 1 and 2, and rows
3 and 4 as contributions to the systematic error: This adds
0.05 kpc to the error budget.

The difference in Rp between the Keplerian and the relativistic
model amounts to 0.09 kpc for S2. Since we have not explicitly
detected relativistic effects, we include half of this in the
systematic error. Similarly, we account for the models using an
extended mass component, adding 0.01 kpc only.

Adding the contributions in squares, we estimate the
systematic error of the S2-based distance estimate to be
0.17 kpc.
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Figure 3. Mass of and distance to Sgr A" from the orbit of S2. The three panels show projections of the respective Markov chains into the mass—distance plane, giving
contours at the 1, 2, and 30 level. The dashed lines mark the best-fit values. The left panel is for a fit without prior information (row 1 in Table 1); the middle panel
includes the priors and thus leads to smaller parameter uncertainties (row 2 in Table 1). The right panel in addition uses the Keck data from Ghez et al. (2008), which
leads to a small shift of the best-fitting parameters with virtually unchanged uncertainties (row 3 in Table 1).

3.3. The Potential Based on S1

S1 is the second-best star in terms of how much it constrains
Sgr A*H potential (Figure 5). We can follow the trajectory of
this mg = 14.8 star over the full time range from 1992 to 2016,
and it does not suffer from any apparent confusion. It passed
the pericenter of its orbit in mid-2001. If one applies the
coordinate system priors, S1 yields a similarly good constraint
on Ry, as S2. The best-fit parameters and statistical errors for S1
are (row 5 in Table 1):

M =445+ 028 x 10° M.

Ro = 847 + 0.18 kpc. )

Without the priors, the S1 fit is not well constrained, and no
useful constraints on M and R, can be obtained. This is in
contrast to the fit of S2, for which the prior information is not
essential. We have three possible ways to include prior
information for S1. First, we can apply the coordinate system
priors as obtained from Plewa et al. (2015). This assumes that
the radio source Sgr A* is the counterpart to the mass. This
method of including the coordinate system prior results in the
numbers given in Equation (4) and row 5 in Table 1. The
second option is to use the results from the S2 fit without priors
as coordinate system priors for S1. This assumes that the two
stars orbit the same mass. This fit yields M = 4.55 + 0.29 x
10°M., and Ry = 8.58 £ 0.19 kpc. The third option again
assumes that S1 and S2 orbit the same mass: a simultaneous fit
of the two data sets yields M = 4.69 + 0.14 x 10° M., and
Ro = 8.63 £ 0.10 kpc. The agreement at the 10 level between
these numbers shows that the method by which the prior
information is included does not matter.

Another difference between S1 and S2 is that the error
ellipse of S1 is oriented more steeply, M o< R3. For the
following discussion it is useful to introduce
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where G is the gravitational constant, « the angular size of the
semimajor axis, and 7 the orbital period. For a data set with

astrometry points only, one cannot measure mass and distance
separately; instead one has a complete degeneracy M ~ R; or,
in other words, one constrains z. When measuring i, the only
quantities that enter are the angular size of the semimajor axis
and the orbital period, which both can be determined from
astrometry only. For a star with both astrometry and
spectroscopy, M ~ Ry' with a b 3, for example o = 2.00
for our S2 data set. In the case that one has only a single radial
velocity and an astrometric orbit, the error ellipsoid is oriented
along the Ry- and p-axes, and its extension in the Ry-direction
is given by the accuracy of the radial velocity point and by how
much the inclination is degenerate with Ro. The latter
degeneracy is severe for an (almost) face-on orbit with i ~ 0:
If one changes Ry by a factor f, one can find a good orbit fit at
M'=f3M and i’ = i/f2.

The error ellipses in the M—R-plane for S1 are surprising in
two aspects, given that the orbital phase coverage is less than 7
for S1, while the coverage is more than a full revolution for S2.
First, the S1 data yield as good a constraint on Ry as do those of
S2 and, second, the S1 error ellipses are thinner than those
from S2.

The first surprise can be explained in the following way. For
S1, the radial velocity did not change much over the period
covered by the measurements. The data can therefore be
approximated by having, in addition to the astrometry,
essentially a single, but very well measured radial velocity
(with an uncertainty of around (rv/ v’m ~ 15km sm). One
has thus an error ellipsoid along the p-axis. Having a single
radial velocity data point with a relative error of around
(15 kms" 1)/(1100 kms* ") = 1.4% yields a distance error in
the percent regime, up to a geometry factor depending of the
shape and orientation of the orbit, which is not a large factor for
S15% orbit. The distance estimate comes from the comparison of
the raggial velocity (in km sﬂl) with the proper motion (in
mas yr l). Compared with S2, the mean (absolute) radial
velocity for S1 is actually higher, such that it is plausible that
S1 can yield a similarly tight constraint on R,,.

The second surprise is that S1 yields a very good constraint
on /i, the ellipse is even tighter in the p-direction as is the S2
ellipse in the M /R¢ direction. To eliminate the influence of the



