Relativistic Cosmology (cont.)

\[
\left(\frac{1}{a} \frac{da}{dt} \right)^2 - \frac{8\pi G}{3} \rho - \frac{1}{3} \Lambda c^2 \right] a^2 = -hc^2 \quad (21)
\]

\[
\frac{d^2 a}{dt^2} = \left[\frac{-4\pi G}{3} \left(\rho + \frac{3\rho_r}{c^2} \right) + \frac{1}{3} \Lambda c^2 \right] a \quad (22)
\]

where \(\rho = \rho_r + \rho_m \)

The cosmological constant \(\Lambda \) acts as a constant mass density \(\rho_\Lambda \)

\[\rho_\Lambda = \frac{\Lambda c^2}{8\pi G} \]

So the Friedmann equation (21) can be written

\[
\left(\frac{1}{a} \frac{da}{dt} \right)^2 - \frac{8\pi G}{3} \left(\rho + \frac{3\rho_r}{c^2} + \rho_\Lambda \right) \right] a^2 = -hc^2 \quad (23)
\]

\(\Lambda \) also acts as a negative pressure \(P_\Lambda \)

\[P_\Lambda = -\rho_\Lambda c^2 \]

So \[\frac{1}{3} \Lambda c^2 = \frac{8\pi G}{3} \rho_\Lambda = -\frac{8\pi G}{3} \frac{P_\Lambda}{c^2} \]
Therefore, we can also write

\[\frac{1}{3} \Lambda c^2 = -\frac{4\pi G}{3} \rho_r - \frac{4\pi G}{c^2} P_\Lambda \]

The acceleration equation (22) can be written in a more symmetric way:

\[\frac{d^2 g}{dt^2} = -\frac{4\pi G}{3} \left[\rho_r + \rho_m + \rho_r + 3 \left(\frac{P_r + P_\Lambda}{c^2} \right) \right] a \tag{24} \]

Since \(\Lambda \) is a constant energy density, the total amount of dark energy grows with the scale factor \(a \), but it doesn't violate the 1st law of thermodynamics:

\[\frac{dS}{dt} = -3 \left(\rho + \frac{P}{c^2} \right) \frac{1}{a} \frac{dg}{dt} \tag{16} \]

because it has negative pressure \((P_\Lambda = -\rho_\Lambda c^2) \). Therefore, \(\Lambda \) contributes a positive term to the acceleration equation (24), which dominates if and when the scale factor \(a \) becomes large enough.
Hubble Diagram (in a matter-only universe)

\[\begin{align*}
\text{m} - \text{M} & = 5 \log d_L - 5 \\
\text{for } \Omega_m = 0 & \quad d_L = \frac{cz}{H_0} \left[\frac{1+z}{2} \right] \\
\Omega_m = 1 & \quad d_L = 2c \left[1+z - \sqrt{1+z} \right] \frac{1}{H_0} \\
\Omega_m = 2 & \quad d_L = \frac{cz}{H_0} \\
\text{When } z > 0.1 & \quad d_L = \frac{cz}{H_0} \text{ for all } \Omega
\end{align*} \]
What is luminosity distance \(d_L \)?

\[
\text{Flux } F = \frac{L}{4\pi d_L^2} = \frac{L}{4\pi (1+z)^2 r^2}
\]

\(r(t) = a(t) \, r_0 \)

\(r = r_0 \) at the present time

coordinate distance

So \(d_L = (1+z) \, r_0 \)

One factor of \(1+z \) comes from the redshift of the light, and another factor of \(1+z \) comes from cosmological time dilation, the fact that photons arrive at a lower rate. So the energy flux is reduced by \(\frac{1}{1+(1+z)^2} \).

Coordinate distance is difficult to calculate, except for the case \(\Sigma_m = 1 \), where a photon travels a distance \(dr = c \, dt \) in a time \(dt \), where \(dr = a(t) \, dr_0 \). Therefore

\[
\int^{r}_{r_0} dr_0 = \int^{t}_{0} \frac{c \, dt}{a(t)}
\]

Previously we showed that \(a(t) = \left(\frac{t}{t_0} \right)^{2/3} \) for \(\Sigma_m = 1 \).
\[r_0 = t_0^{2/3} \int_0^{t_0} \frac{c \, d \tau}{\tau^{2/3}} = 3 \, c \, t_0^{2/3} \left(t_0^{1/3} - t^{1/3} \right) \]

At the present time \(r_0 = r_1 \), so

\[r = 3 \, c \, t_0 \left[1 - \left(\frac{t}{t_0} \right)^{1/3} \right] \]

\[= 3 \, c \, t_0 \left[1 - \sqrt[3]{a(t)} \right] \quad a(t) = \left(\frac{t}{t_0} \right)^{2/3} \]

But \(a(t) = \frac{1}{1+z} \) so

\[r = 3 \, c \, t_0 \left[1 - \frac{1}{\sqrt[3]{1+z}} \right] \]

Previously we showed that

\[t = \frac{2 \, z}{3 \, H_0} \left[\frac{1}{1+z} \right]^{3/2} \quad \text{for } \Omega_m = 1 \]

\[\Rightarrow t_0 = \frac{2 \, z}{3 \, H_0} \quad \text{is the present age} \]

\[\Rightarrow r = \frac{2 \, c}{H_0} \left[1 - \frac{1}{\sqrt[3]{1+z}} \right] \]

\(\frac{2c}{H_0} \) is the "horizon distance", the furthest observable point \((z = \infty) \)
Finally, the luminosity distance is

\[d_L = (1+z) \frac{r}{H_0} = \frac{2c}{H_0} \left[1 + z - \sqrt{1+z} \right] \]

Aside: It is interesting that a photon travels a distance \(r_0 = \frac{2c}{H_0} \) from the horizon in a time \(t_0 = \frac{2}{3H_0} \)

\[\Rightarrow r_0 = 3c \cdot t_0 \]

The photon travels farther than \(c \cdot t_0 \) because the Universe was expanding while it travelled.

Note: It is difficult to calculate \(d_L \) for other values of \(\Omega \) because it is not the case that \(dr = a(t) \, dr_0 \) for other \(\Omega \)'s, \(\Omega = 1 \) \((k = 0) \) is the special case in which space is "flat". Other cases are "curved" space, where \(r \) can be either greater than or less than \(r_0 \) at \(t_0 \).
Angular Diameter - Redshift Relation

Consider a galaxy of physical diameter D at comoving coordinate r_0. In the small-angle limit:

$$D = a(t) \frac{r_0 \theta}{D}$$

$$D = \left(\frac{1}{1+z}\right) r_0 \theta$$

$$\theta = \frac{(1+z)}{r_0} D$$

but $d_L = (1+z) r_0$

$$\Rightarrow \quad \theta = \frac{(1+z)^2}{d_L} D$$

In Euclidean space $\theta = \frac{D}{d}$

\[
\frac{\theta}{D} \left[\frac{\text{rad}}{\text{kpc}} \right]
\]

\[
\frac{1}{8.15}
\]
Surface brightness is a function of redshift, unlike in Euclidean space. Surface brightness is flux per unit solid angle:

\[SB = \frac{L}{4\pi d_L^2 / \pi (\theta/2)^2} \]

But \(\theta = \frac{(1+z)^2 D}{d_L} \)

\[\Rightarrow SB = \frac{L}{(\pi D)^2 (1+z)^4} \]

In Euclidean space, \(SB = \frac{L}{(\pi D)^2} \)

Cosmological surface brightness dimming is proportional to \(\frac{1}{(1+z)^4} \)