Figure 17.1 Corotating coordinates for a binary star system.

Figure 17.2 The effective gravitational potential Φ for two stars of mass $M_1 = 0.85 \, M_\odot$, $M_2 = 0.17 \, M_\odot$ on the x-axis. The stars are separated by a distance $a = 5 \times 10^{10} \, \text{cm} = 0.718 \, R_\odot$, with their center of mass located at the origin. The x-axis is in units of a, and Φ is expressed in units of $G(M_1 + M_2)/a = 2.71 \times 10^{15} \, \text{ergs g}^{-1}$. (In fact, the figure is the same for any $M_2/M_1 = 0.2$.) The dashed line is the value of Φ at the inner Lagrangian point. If the total energy per gram of a particle exceeds this value of Φ, it can flow through the inner Lagrangian point between the two stars.

Figure 17.3 Equipotentials for $M_1 = 0.85 \, M_\odot$, $M_2 = 0.17 \, M_\odot$, and $a = 5 \times 10^{10} \, \text{cm} = 0.718 \, R_\odot$. The axes are in units of a, with the system’s center of mass (the “x”) at the origin. Starting at the top of the figure and moving down toward the center of mass, the values of Φ (in units of $G(M_1 + M_2)/a = 2.71 \times 10^{15} \, \text{ergs g}^{-1}$) for the equipotential curves are $\Phi = -1.875, -1.768, -1.583, -1.583, -1.768$ (the “dumbbell”), -1.875 (the Roche lobe), and -3 (the spheres). L_4 and L_5 are local maxima, with $\Phi = -1.431$.

Figure 17.4 The classification of binary star systems. (a) Shows a detached system, (b) shows a semidetached system in which the secondary star has expanded to fill its Roche lobe, and (c) shows a contact binary.