
5 Gas Dynamics

The second part of this course is devoted to understanding the gas in galaxies. While the Milky
way has nearly ten times as much mass in stars as in gas, it is clear that all of the stars must have
formed out of gas, so we can not ignore this component. Moreover, even now stars are forming out
of gas, and so much of the interesting physics in galaxy evolution and formation is in the evolution
of the gas (and dust) component.

As we discussed in the introduction, when the mean free path between collisions for a set of atoms
is much less than any other length scale of interest, then we can treat the set of atoms as a gas,
and use the gas dynamics equations. The equations themselves are more complicated than the
simple Newton equations but in many respects, they are easier to understand. For example, the
velocity dispersion of atoms in a gas is well-represented by the Maxwell-Boltzmann distribution.

In the following sections, we will first examine the components of the Interstellar medium and
then derive the gas equations (I will sometimes refer to these as the fluid equations). Then we will
examine simple solutions that can be written down for propagating sounds waves and investigate
the gravitational instability.

5.1 Observations of the ISM

First, we will briefly summarize the primary constituents of the interstellar medium, and how it is
observed. The gas itself is largely hydrogen (74% by mass) and helium (24%) and other, heavier
elements (2%). Often the heavier elements combine to form dust grains, which are micrometer to
millimeter sized concentrations. Dust of course is quite opaque at optical wavelengths. In dense
regions, the gas can be largely molecular (e.g., H2, CO).

How the ISM is observed

The ISM is observed through a large range of techniques, the more common of which are summa-
rized here.

Absorption of starlight was one of the first ways to observe the ISM, and remains very impor-
tant. Dust, of course, obscures background objects at UV and optical wavelengths, but there are
also absorption lines of individual atoms, such as CaII and NaI (for neutral gas), and CIV and
OVI (for ionized gas). The advantage of this sort of approach is that it can be quite sensitive to
small amount of intervening material. The downsides are that it requires complicated corrections
to know how much of the gas is in the form of that particular ionized state (e.g. CaII vs. CaI),
and that we measure only the velocity of the absorbing gas, not its distance directly. Both of these
make it difficult to work out the distance and amount of interstellar gas.

Gas which is a bit denser and warmer often emits line radiation directly. These optical and UV
emission lines include Hα, which is the n = 3 to n = 2 transition of hydrogen. It turns out that
this emission usually comes from gas which is being ionized by massive stars (HII regions, which
we will discuss in more detail later) and so is an excellent diagnostic for the amount of ongoing
star formation in a region. Other emission lines are important as diagnostics of the density and
temperature of the emitting gas. The line ratios of OIII and OII, for example, can be used to work
out the gas temperature, because of the different energies required to excite the electrons.
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Radio emission lines are also important, and one of the most important is the 21 cm hyperfine
transition of neutral hydrogen. We have mentioned this line previously in the context of measuring
galactic rotation curves, but it is also a good probe of the total amount of neutral hydrogen gas.
While molecular hydrogen is difficult to observe directly, the rotational transitions of CO are a
good tracer for dense molecular gas. These transitions fall in the radio spectrum.

While the 21 cm line traces the HI distribution, the dust can be distributed somewhat differently
(in particular, it also traces dense regions where the HI has been converted to H2). The dust can
be observed both due to its obscuring effects, but more directly from it’s infrared emission. The
dust is usually quite cold (T ∼ 10−500 K) and emits mostly black-body radiation, although there
are some dust line features which can be used to probe the chemical composition of the dust.

The X-ray emission mostly traces hot gas with temperatures of 106 K and above. At these
temperatures, the emission is both through lines of high-energy atomic transitions, but also
bremsstrahlung radiation. In spiral galaxies, hot gas is mostly generated by supernovae explo-
sions, but elliptical galaxies are dominated by their hot gas and generally have very little cold gas
and dust.

Synchrotron radiation is produced by electrons spiraling along magnetic fields lines. To be
observed, the electron energies have to be quite large, and cosmic-rays are generally the most
important source of synchrotron emission in the galaxy. Therefore, synchrotron traces both the
high-energy electron population and the magnetic fields.

How the gas and dust is distributed in disk galaxies

The above observations have led us to the following basic picture for how matter is distributed in
our galaxy. First, the gas is distributed in a way much like the thin disk, with a similar scale-length
extending out to probably even larger distances than the stellar distribution (this is certainly true
for most other spiral galaxies). The width of the gas disk is even thiner than the stars with a scale
height of around 100 pc (compared to 300 pc for the stars).

The gas in the disk is not smoothly distributed. In particular, it is clear that small clouds form
with varying temperatures and densities. Observations indicate that these clouds generally have
fall into one of three different typical states, or phases. These phases are designated as the Cold
Neutral Medium (CNM), the Warm Neutral Medium (WNM, or sometimes if the gas is
ionized, the WIM), and the Hot Ionized Medium, (HIM), which is more commonly known as
the coronal gas. These three phases are summarized in the following table.

phase density (cm−3) Temperature (K)
CNM 10 102

WNM 10−1 104

HIM 10−3 106

Although this is an oversimplified description, we shall see that there is some use to this description.
In fact, it is immediately clear, that assuming an ideal gas where the pressure is P = nkT , the
three phases are in pressure equilibrium.

The HI is distributed throughout the disk, although it is particularly dense in the spiral arms. In
the spiral arms, the density is high enough that it can form molecules, and we see the formation
of Giant Molecular Clouds (GMCs) largely in the spiral arms. These clouds have masses in
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the range 103M" to 106M". Note that the center of the Milky Way and other galaxies has gas
which is sufficiently dense that most of the hydrogen is in molecular form, giving the impression
of a hole in the HI distribution.

Finally, it is worth pointing out that not all gas is in galaxies, in fact, probably the majority of all
gas is outside of galaxies. Evidence for this comes from absorption seen in the spectra of distant
quasars; this absorption is almost surely due to clouds of intergalactic hydrogen (and helium, and
some small fraction of heavy elements).

5.2 The Equations of Gas Dynamics

In this section, we will derive the equations which describe how gas moves under the influence
of internal and external forces. We describe the gas with three related quantities. These are the
gas density ρ(x), velocity v(x), and pressure P (x) (and possibly energy e(x). Through most of
this course we will deal with the gas dynamic equations in only one dimension, although there
three-dimensional form is not much more complicated. Note that in order to define the density,
velocity and pressure of a parcel of gas we must restrict ourselves to regions which contain enough
atoms that these quantities can reasonably be defined.

Our guiding principle, or rather guiding principles, will be the conservation of mass, momentum
and energy. These simple ideas will prove to be very powerful.

Mass conservation

We begin with mass conservation, because it is the simplest and most basic. We apply it to a box
and imagine gas flowing in one side of the box with density ρ and velocity u(x). The box has a
length ∆x and gas flows out the other side with density ρ + ∆ρ and velocity u + ∆u. The area of
the box sides is A. We will assume the flow is entirely along the x-axis.

ρ+Δρ,υ+Δυ

dx

x x+dx

ρ,υ

Mass conservation tells us that the change in mass ∆M in some time ∆t must be the mass flowing
in one side minus the mass flowing out the other. In other words,

∆M = ρAu∆t− (ρ + ∆ρ)A(u + ∆u)∆t

Or, re-arranging this and defining ∆M = Aρ∆x, we find

∆ρ

∆t
= −

[(ρ + ∆ρ)(u + ∆u)− ρu

∆x

]

If we take ∆ to be an infinitesimally small change, then this becomes a partial differential equation
(partial because ρ(x, t) and u(x, t) depend on more than one variable):

∂ρ

∂t
= −∂(ρu)

∂x
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Or, as this is sometimes written:
∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0 (56)

This is our first equation and tells us how the density at some point in space changes due to the
flow of gas into and out of that spot. It is not a complete description because we do not have any
equation which tells us how the velocity changes. This is next.

Momentum conservation

We repeat nearly the same line of argument as before, but this time replace mass with momentum
S, so that the change in momentum during some time ∆t is given by

∆S = Sin − Sout + F∆t− (F + ∆F )∆t.

In this case we not only have the flow of momentum, but the change in momentum due to the
pressure force acting on the sides of the box (recall that dS/dt = F ). Since the pressure P = F/A
(force per unit area), and S = Mu = ρA∆xu, this becomes

∆(ρu)
∆t

= −
[
(ρ + ∆ρ)(u + ∆u)2 − ρu2

∆x

]

− (P + ∆P )− P

∆x

Once again, we can take ∆x and ∆t to be arbitrarily small so that

∂(ρu)
∂t

= −∂(ρu2)
∂x

− ∂P

∂x

or we can expand this, and use the mass equation (eq. 56) to simply, to get an equation for the
time derivative of u alone:

∂u

∂t
+ u

∂u

∂x
= −∂P

∂x

This then is the second of our fluid dynamics equations. We can add gravity on to this by examining
the change in momentum due to the gravitational force. When we work it through, we find

∂u

∂t
+ u

∂u

∂x
= −∂P

∂x
− ∂Φ

∂x
(57)

Energy conservation

We could repeat this process for the conservation of energy and write down an equation for the
evolution of the specific energy e (energy per unit mass). We would find,

∂e

∂t
+ u

∂e

∂x
=

P

ρ

∂u

∂x

Notice that we still do not have a complete set of equations because we have four unknowns
ρ, u, e, P and only three equations. A fourth relation must be established for the pressure, and
generally this depends on the type of gas or fluid. A common assumption is that the gas is ideal,
in which gas

P = (γ − 1)ρe
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where γ is the ratio of specific heats and is equal to 5/3 for a a monatomic gas. A formula of this
type which relates P to e and ρ is known as an equation of state. It is often common to define
a temperature T which, for an ideal gas, is related to the pressure via

P = nkT (58)

In fact, we will not use the energy equation in this course, and will instead depend on an simpler
description of the pressure. In general we will assume that the pressure is directly related to the
density via:

P = Kργ

where K is a constant and γ will be either 5/3 or 1. This type of relation between pressure and
density is known as the polytropic equation of state. The case of γ = 5/3 is sometimes known as
the adiabatic equation of state. When γ = 1, the pressure is directly proportional to the density,
and from eq.(58, this is the same as saying the temperature is constant. Therefore, γ = 1 is also
refereed to as an isothermal equation of state.

Fluid Equations: summary

Here we repeat the (simplified) fluid equations that we will use:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0 (59)

∂u

∂t
+ u

∂u

∂x
= −∂P

∂x
− ∂Φ

∂x
(60)

P = Kργ (61)

Imperfect gases: Heat conduction and viscosity

So far, we have assumed the gas is perfect in the sense that there are no particle effects that might
introduce forces between neighboring gas elements beyond what we have written. In fact, this
is not generally true. The particle nature of gases mean that particles typically move a mean
free path lmfp between collisions. When the gas properties change over this length-scale, an atom
of gas will collide will other atoms with a different temperature or density. This will conveying
information.

When the particle collides with atoms of a different temperature, this is known as heat conduc-
tion. Heat (energy) is communicated from one part of the fluid to another. Heat conduction is
very familiar in solids, but it also occurs in gasses.

When the particle collides with atoms moving at a different bulk velocity u, then momentum is
conveyed and this effect is known as viscosity. Once again, viscosity is a familiar property of a
fluid.

In general, in astrophysics, these sorts of collisional effects are not important, although there are
a number of important examples. One of these comes about when there are discontinuities in
the flow – in other words, when the gas properties such as density and temperature, change very
rapidly over a very short space. As we will see in following lectures, an important example is a
shock. In turns out that although we will represent shocks as arbitrarily thin changes in the fluid
properties, the density and temperature in a shock change over a mean free path length lmfp. This
is because if the shock were to be narrower than this length, viscosity would act to smear it out.
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5.3 Sound Waves

We now turn to a number of solutions of these equations. The first is the effect of small perturba-
tions in the fluid equations without gravity. Let’s take a uniform gas with density ρ0, pressure P0

and zero velocity. This is a trivial solution to the fluid equations (check it!).

Now we perturb this solution slightly and write the solution as the sum of the uniform part plus
the perturbation:

ρ(x, t) = ρ0 + ρ1(x, t)
u(x, t) = u1(x, t)
P (x, t) = P0 + P1(x, t)

where in each case we assume the perturbation is small so that ρ1 # ρ0 and P1 # P0. This appears
to make the solution more complex but in fact it simplifies things be removing ”non-linear” terms.
Let’s see how this works by putting these solutions into eq. (61). The density equation (derived
from mass conservation) becomes:

∂ρ1

∂t
+ u1

∂ρ1

∂x
+ (ρ0 + ρ1)

∂u1

∂x

Notice that the middle term is the product of two of these “perturbed” values (ρ1 and u1). If
each one is very small, then the product of two of them will be negligibly small. Therefore we can
neglect this term. The same is true of the ρ1 part of the third-term so that this equation becomes

∂ρ1

∂t
+ (ρ0)

∂u1

∂x
(62)

Now, let’s turn to the second fluid equation, that we derived from momentum conservation. This
is

∂u1

∂t
= − 1

ρ0

∂P1

∂x
(63)

where once again we have neglected two non-linear terms. We are looking to write down a single
closed equation for ρ1 so let’s re-write P1 in terms of ρ1 by writing:

∂P1

∂x
=

∂P1

∂ρ1

∂ρ1

∂x
= c2

s
∂ρ1

∂x

where we have defined cs for convenience. We can remove u1 from these two equations by differ-
entiating eq. (62) with respect to t and differentiating eq. (63) with respect to x to get

∂2ρ1

∂t2
= −ρ0

∂2u1

∂x∂t
∂2u1

∂t∂x
= − c2

s

ρ0

∂2ρ1

∂x2

Flipping the order of the x and t differentials for u1 allows us to eliminate u1 entirely, and we find

∂2ρ1

∂t2
= c2

s
∂2ρ1

∂x2
(64)
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which is the wave equation. To show these, we can take a sinusoidal solution of the form

ρ1(x, t) = A cos (kx− ωt)

Substituting this into the wave equation, we find that this is a solution for arbitrary A as long as

ω = csk

. It is fairly easy to convince yourself that this is the solution for a traveling wave with velocity cs

(to do so, note that the peak of cosine wave occurs at kx − ωt = 0, or when x = cst). The wave
repeats itself when kx = 2π, so the wavelength of the wave is λ = 2π/k. Similarly, the period
T = 2π/ω.

This equation has a number of nice properties. It is linear so it supports the principle of super-
position – that is, if you have two solutions ρA and ρB (with different wavelengths), then the sum
ρA + ρB is also a solution.

What about the speed of sound? Remember that c2
s = ∂P/∂ρ, which we can evaluate for a given

equation of state. For example, let’s take P = Kργ , in which case

c2
s =

γP

ρ
=

γkT

µ

where for the last equality we have assumed the ideal gas law P = nkT and ρ = µn.

5.4 The Gravitational Instability

In the above analysis, we linearized the fluid equation by neglecting the non-linear terms. This
produced an equation for how small perturbations propagate. We can repeat this including gravity.
We have the same set of equations as above, except for two changes. First, we include the ∂Φ/∂x
term in the momentum equation, and second we include the one-dimensional Poisson equation:

∂2Φ
∂x2

= 4πGρ

The actual analysis progresses very much as before. When the momentum equation is differentiated
with respect to x, the gravitational acceleration term becomes equal to ∂2Φ/∂x2 and we get:

∂2ρ1

∂t2
= −ρ0

∂2u1

∂x∂t
∂2u1

∂t∂x
= − c2

s

ρ0

∂2ρ1

∂x2
− ∂2Φ1

∂x2

This last term can be replaced with the Poisson equation. But note that there is subtle point here,
because th Poisson equation should really have ρ and Φ replaced with ρ = ρ0+ρ1, and Φ = Φ0+Φ1.
However, there is no solution of the Poisson equation with a non-zero ρ0 (this implies an infinite
universe with matter everywhere and so Φ0 should be infinite), so we must assume that we can
simply write

∂2Φ1

∂x2
= 4πGρ1
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If this is true, we can combine the above three equations to get a single equation for ρ1 again:

∂2ρ1

∂t2
= c2

s
∂2ρ1

∂x2
+ 4πGρ0ρ1 (65)

This is similar to the wave equation we derived earlier, but has an additional term on the right-hand
side.

We can once again postulate a solution of the form A cos (kx− ωt) in which case we get the
dispersion relation

ω2 = c2
sk

2 − 4πGρ0

If the wavelength λ is small so that k = 2π/λ is large, then ω will be large and the density term
will be small and we will get back the same sound waves as before. Another way to put this is
if the density ρ0 is small enough, then the last term will be small. This means that in the small
wavelength limit (or, equivalently, the low density limit), gravity is unimportant and we just get
oscillating waves.

On the other hand, if the λ is increased (or ρ0 is increased), then k gets smaller and smaller until

c2
sk

2 − 4πGρ0 < 0

so that ω2 < 0 (which implies that ω is an imaginary number). At this point a better solution is one
of the form ρ1 = A exp(αt) exp(kx) where α = −ω so that α is positive. This is an exponentially
growing solution and so the density ρ1 keeps on getting larger and larger with time. This, of
course, is known as the gravitational instability, or the Jeans instability.

There is a critical wavelength when ω = 0 and the solution is balanced between oscillations and
growing. This occurs when kJ = 4πGρ0/c2

s or in terms of the wavelenth:

λJ =
(

πc2
s

Gρ0

)1/2

. (66)

This is known as the Jeans wavelength. Waves with wavelengths smaller than this value oscillate
as sounds waves, while larger waves grow in amplitude. We can define the Jeans mass as

MJ =
4πG

3
λ3

Jρ0 =
πρ0

6

(
πc2

s

Gρ0

)3/2

(67)

Applications of the Jeans Equation

We can now ask the question, what is the predicted Jeans length for the three phases of the ISM
discussed earlier. First we note that because the sound speed is proportional to cs ∝ T 1/2, the
Jeans length scales as

λJ ∝
(

T

ρ

)1/2

and MJ ∝ T 3/2ρ−1/2. We begin with the hot phase, and for the typical densities and temperature
listed earlier, we find λJ ∼ 500 kpc for the hot phase, much larger than the galaxy. Therefore, to
a very good approximation, the hot phase is not gravitationally unstable. The warm phase has
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a Jeans length of about 5 kpc, which is about the same size as the galaxy. Therefore, only large
wavelength modes in the warm phase are unstable.

The cold phase on the other hand, has typical jeans lengths of 50 pc (or even smaller – a few pc –
for the coldest, densest part of this gas). In fact, this, as we shall see, is the typical length scale for
giant molecular clouds, and we can conclude that it is the cold phase which is the source of star
formation, since it is only this phase which can possibly have wavelengths larger than this critical
value

This process of gravitational fragmentation and star formation forms an important part of the
life-cycle of gas in the ISM. A simplified picture might be what hot gas cools, first to warm and
then to cold gas. This cold gas becomes gravitationally unstable and forms stars. The massive
stars then generate winds, ionizing photons and eventually explode as supernovae, all of which
return energy back into the ISM, heating some of the cold gas back into the warm and hot phases,
to begin the cycle again.

5.5 Shock Waves

In the previous section, we discussed solutions of the fluid equations involving small perturbations
away from a uniform state, but there are of course, many other types of solutions. One important
set involves discontinuities in the flow – that is places where the density, temperature, pressure
and velocity change very suddenly. There are two classes of discontinuities – those in which the
pressure and velocity change suddenly and those in which the they does not. The first type are
called shocks, while the second are known as contact discontinuities. This second type is very
easy to understand – they are places where, for some reason, the density and temperature change
but their product — the pressure — does not. Since there is no change in the pressure, the pressure
gradient term is zero and there is no net force on the case. In fact, it is this kind of solution which
occurs at the edges of clouds between the different phases.

Waves steepening into shocks

Shocks on the other hand are quite different and more complex. There are a number of reasons
shocks can occur, for example supernovae explosions or collisions between clouds. However, it is
worthwhile first considering another wave to form a shock, from the steepening of a sound wave.
Let’s go back to the cosine sound wave we considered before. In the wave equation we derived, we
assumed that the sound speed could be effectively given by the unperturbed pressure and density
(P0 and ρ0), but in fact a more careful derivation shows that the wave travels at slightly different
speeds along its length. In particular, the sound speed is

c2
s =

∂P

∂ρ
= γKργ−1

where we have used our simplified equation of state to get the second equality. This shows that
(provided γ %= 1) that the sound speed is faster at the peak where the density is higher and slower
in the trough. This is shown schematically in the figure at right (taken from a Los Alamos National
Lab publication), where we can also see the steepening of the wave as it continues to propagate.
Eventually, if it were allowed to, the peak would overtake the trough of the wave and look like a
breaking water wave. In fact, because a sound wave is longitudinal rather than transverse, this is
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not permitted and instead a discontinuity forms in the pressure (and in all the other quantities as
well).

In fact, in the ISM, this steepening process is not a sig-
nificant source of shocks, but it does illustrate one im-
portant point which is that there is a process which is
acting to keep the discontinuity sharp. Of course, as we
highlighted earlier, the gas is really composed of discrete
atoms and this particle nature prevents the shock from
becoming too steep — viscosity acts to smear it out. The
competition between these two processes keeps the shock
stable with a thickness of a few mean free paths.

The Shock Jump Conditions

To derive relations between the density, pressure and ve-
locity on either side of a shock, we go back to the mass,
momentum and energy conservation equations that we
used to derive the fluid equations. We denote the pres-
sure, density and velocity on the pre-shock side with P0,
ρ0 and u0, and use P1, ρ1 and u1 for the post-shock quan-
tities. We assume that we are in a frame in which the
shock itself is stationary.

We begin with mass conservation. Clearly all the matter
flowing into a shock has to flow out the other side so

ρ0u0 = ρ1u1. (68)

We can see what must be going on by imaging drawing a box with side area A that cuts across
the shock. During a time ∆t the amount of mass that flows into the box on the right is ∆tu0Aρ0,
while the amount of mass flowing out is ∆tu1Aρ1. Canceling ∆t and A gives us the earlier result.

Momentum is more complicated because the pressure is different on either side, but once again
we can appeal to our box. The momentum flowing in is just the mass times the velocity, but now
each side of the box feels a force P0A and P1A in the other direction, so the momentum changes
by the difference between these forces multiplied by ∆t. Once again we can cancel A∆t and we
get

ρ0u
2
0 + P0 = ρ1u

2
1 + P1 (69)

Finally, the energy is very similar in that we have energy conservation, but now we have both
kinetic energy which is the mass times u2/2 and also the thermal energy which is (for an ideal
gas with γ = 5/3) equal to the mass times 3P/2ρ. We add to this the energy added due to the
pressure forces (work equals force times distance so this is Fu∆t = PuA∆t. The result is (after
canceling all the A∆t terms):

1
2
u2

0(ρ0u0) +
3
2
P0u0 + P0u0 =

1
2
u2

1(ρ1u1) +
3
2
P1u1 + P1u1

or dividing through by ρ0u0 and simplifying we find

1
2
u2

0 +
5P0

2ρ0
=

1
2
u2

1 +
5P1

2ρ1
(70)
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Finally, we can use the simplified equation of state P = Kργ to write the sound speed as c2
s =

5P/3ρ. It is also typical to define the Mach number as the ratio of the velocity of the pre-shock
gas to the sound speed in the gas

M0 =
u0

c0

These equations, in particular, eq. (68) to (70) are three equations for six unknowns (the pressure,
density and velocity on either side of the shock) . This means that we can only solve for some
quantities in terms of others. As long as we are given 3 values, we can derive the other 3. The
usual approach is to determine the ratios between the quantities on either side, i.e. ρ1/ρ0, u1/u0

and P1/P0.

The process of determining these ratios involves only algebra and is “relatively easy”. It involves a
solving a quadratic equation which gives two distinct solution; however, only one of these solutions
involves an increase in the pressure across the shock (in the other the pressure drops and this is
known as a rarefaction shock – it also involves a decrease in the entropy and so violates the third
law of thermodynamics, implying that such a shock does not occur in nature). The solutions can
be written in terms of the Mach number and are:

ρ1

ρ0
=

u0

u1
=

4M2
0

M2
0 + 3

(71)

P1

P0
=

5M2
0 − 1
4

(72)

These relations show that the ratios are all a function of just one parameter – the Mach number
of the shock. This number must be larger than one (M0 = 1 implies that the ratios are all unity
so there is no change in the properties, and so there is no shock; M0 < 1 is physically not allowed
– see the discussion above).

Strong shocks

If M0 is just slightly above 1, then the shock is weak and the density and pressure barely change,
but when M0 & 1, the density and velocities ratios go the limiting case

ρ1

ρ0
=

u0

u1
= 4

while the pressure jump goes to 5M2
0 /4 (the temperature jump becomes T1/T0 = 5M2

0 /16 in this
limit). Because of this simple result it is often useful to simplify the discussion to such strong
shocks. Many astrophysical shocks are strong.

However, throughout the above derivation we have worked in the frame in which the shock is
stationary and the pre-shocked gas is flowing into the shock. While it is easy to derive the jump
conditions in this frame, it is not the most natural frame for most situations. For example,
in a supernova explosion the pre-shock gas is the ISM outside of the blast wave and so should
be stationary. We can transform our results into this frame by performing a simple Galilean
transformation (we are assuming the shock is non-relativistic), in which case we transform the
velocities such that the pre-shock gas is motionless. This can be done by subtracting u0 from all
velocities, and the shock velocity becomes Vs = −u0. We can define u′0 and u′1 as the pre- and post-
shock velocities in the new frame. By definition u′0 = 0 and so u′1 = u1−u0 = u0/4−u0 = −3u0/4
or u1′ = 3Vs/4. We will call this the “rest” frame (of the pre-shocked gas).
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As gas flows through the shock, kinetic energy is converted to thermal energy, and it is interesting
to investigate the just how much of the energy is converted. We can find this by computing the
post-shock kinetic and thermal energies (per particle of mass µ in the rest frame).

eK =
1
2
µ(u′1)

2 =
9
32

µV 2
s

eT =
3
2
kT1 =

3
2

5M2
0

16
kT0 =

9
32

µV 2
s (73)

The last step uses the definition for M0 = u0/c0 and the fact that c2
0 = 5kT0/3µ for γ = 5/3.

Therefore we see that (in this frame and for a strong shock) one-half of the post-shock energy is
in the form of thermal energy and one-half in the form of kinetic energy.

Isothermal shocks

In a strong shock, the density increase is a maximum of four, but the temperature may increase
a large amount. In some cases, the resulting temperature and density result in a very high rate
of radiative cooling (we will address radiative cooling in more detail later in these notes). If the
cooling is strong enough, the gas will quickly radiative its thermal energy and the temperature
will return to the pre-shock temperature. This is known as an isothermal shock.

In this case, we can lump the shock and the cooling region into one single region and treat the
whole thing like one big modified shock. The modification is largely in the energy condition, which
is now simplified to be T2 = T0 (we denote the post-cooling region with a subscript ‘2’). We will
also immediately assume the shock is strong so that we can neglect the pre-shock pressure in the
momentum equation (this is not necessary but simplifies the algebra). In this case we have

ρ0u0 = ρ2u2

ρ0u
2
0 = P2 + ρ2u

2
2

P0

ρ0
=

P2

ρ2
= c2

0

The last equality comes from the isothermal relation T2 = T0. We can replace P2 in terms of ρ2 in
the momentum equation, and the eliminate the ρ2/ρ0 ratios that result using the mass conservation
relation, to obtain the following quadratic equation:

u0u2 = c2
0 + u2

2

which has the solution

u2 =
u0

2

(

1±
√

1− 4c2
0

u2
0

)

≈ u0

2

(

1− (1− 2c2
0

u2
0

)
)

=
c2
0

u0

In terms of the Mach number M0 = u0/c0, we see that the density ratio is
ρ2

ρ0
=

u0

u2
= M2

0 . (74)

This should be compared to the strong shock, for which the maximum density increase is a factor
of 4. In a strong isothermal shock the density increase can be very large. In fact, such shocks
describe the late stages of supernovae remnants, and we can often see the shells of gas that such
shocks sweep up.
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5.6 Supernova Remnants and the ISM

When massive stars have exhausted all of their fuel, they may explode as supernovae. These Type
II supernovae are thought to occur in stars with initial masses larger than about 8 solar masses.
There are also other classes of supernovae, of which the next most important for the ISM is the
Type Ia supernova, which results from a runaway thermonuclear burst when enough mass from
a companion star is accreted onto a white dwarf. Type II supernovae do show hydrogen spectral
lines during the outburst, while Type Ia do. The other difference is that Type II are associated
with star formation and so often explode in dense regions, sometimes within the molecular cloud
within which they were born. Type Ia SN typically occur hundreds of million years after the stars’
births and so are no associated directly with star forming regions.

Despite the difference, the energy produced by both supernovae is similar – about 1051 erg of
energy liberated over a very short time. Some of this energy goes into radiation but much of it
goes into expelling heavy elements at high speed into the ISM.

We will model this injection of energy as three stages of evolution. The first phase is the free-
expansion of the ejecta away from the star and lasts generally a few hundred years. During this
time, the velocity of the ejecta is nearly constant and this phase ends when the ejecta has swept
up a mass approximately equal to the amount of material ejected from the star. At this point, the
remnant enters the energy-conserving (or Sedov) phase of the evolution.

As we noted earlier, for a strong shock, about 1/2 of the energy of the shock is converted into
thermal energy and 1/2 into kinetic energy. Therefore, at any time, the total energy contained
inside the shocked bubble is

ET =
4
3
πR3ρ0(eK + eT ) =

3
4
πn0µR3V 2

S

where in the second part we have used equation (73) for the thermal and energy content of the
post-shock gas. Since the bubble is expanding with the shock velocity, we can write the shock
velocity as VS = dR/dt, and equate the total energy in the bubble to the supernovae energy E∗
(assuming energy conservation, as the name of this phase implies), to get a differential equation
for R:

R3
(

dR

dt

)2

=
4E∗
3πρ0

The solution to this equation is a power-law of the form R(t) = Atα. It is straightforward to show
that it is given by:

R =
( 25

3π

)1/5 (
E∗
ρ0

)1/5

t2/5 (75)

Since the radius is increasing as t2/5, the shock velocity goes as Vs ∝ t−3/5, and is steadily slowing.
Since the shock velocity is decreasing, we know that the Mach number of the shock is dropping
and, from the jump conditions, the post-shock temperature is also decreasing. After a time of
about 104 years, the shock has grown to a size of about 10 pc (for a supernovae exploding into a
medium with n = 1 cm−3). During this phase, the gas is hot enough that it emits primarily in the
X-ray domain, and so supernovae are mostly easily seen as X-ray bubbles (although it should be
pointed out that due to instabilities in the shock front, supernovae remnants are rarely round).

As the remnant expands, its temperature drops and the energy emitted in X-rays becomes more
and more important, until we can no longer ignore this loss of energy, and our principle of energy
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conservation no longer applies. Fortunately, the cooling due to radiation soon becomes so important
that the gas behind the shock loses all of its energy and forms a thin, dense, cold shell right behind
the shock. At this point, the shock is no longer being driven by the pressure of the hold gas behind
the shell but it is still expanding because of momentum conservation. This marks the beginning
of the third phase, usually known as the momentum conserving, or snow-plow phase.

We are now guided by the principle of momentum conservation so that

4
3
πρ0R

3Vs

is the momentum of the swept-up material and is a constant. This can be integrated to find the
position of the shock as a function of time, and matched on to the end of the energy-conserving
phase. If the beginning of this phase occurs at a time t0 when the shock is at a radius R0 and is
moving at a velocity V0, then the solution is

R = R0

[
1 + r

V0

R0
(t− t0)

]1/4

and we can see that at late times R ∝ t1/4. The expansion is slower than the energy-conserving
phase and generally occurs when the post-shock temperature is about a million degrees (and the
shock is moving at about 250 km/s). For our standard conditions, this occurs about 40,000 years
after the explosion at a radius of about 25 pc. At this point, the shell has swept up almost 1400
solar masses of material in the ISM.

The supernovae remnant will continue to expand until its motion becomes part of the general
motion of the ISM (or it mergers with another SNR). Typically about 10% of the energy of the
supernovae is available to heat the ISM (after account for the energy lost due to radiative cooling).
This energy is available to heat the ISM. Although this does not seem like that much it represents
the largest source of energy for the gas in the ISM, and is probably the driving force behind the
turbulent motions seen in the ISM gas.

5.7 Radiative heating and cooling

Quite generally, there are three ways to transfer energy: (i) convection, (ii) conduction, and (iii)
radiation. Convection involves the exchange of energy via the exchange of mass: hot and cold
parcels of gas mix directly. In conduction, heat flows via particle collisions from the hot gas to the
cold gas, but the gas itself does not move. Finally, radiation involves the transmission of photons.

We have remarked on a number of occasions that gas, when heated, can emit photons and so lose
energy. Equivalently, of course, photons can be absorbed by the atoms in the gas and be heated.
These processes are known as radiative cooling and heating and play a hugely important role in
the ISM. We will treat them separately, first examining cooling and then heating.

5.7.1 Cooling

In general, cooling works by a simple three step process. Two atoms collide, which leads to
the excitation in one of the atoms and eventually the decay of the excited state, leading to the
production of a photon. In order for this process to be an efficient coolant, four things must
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occur: (i) collisions must be sufficiently frequent; (ii) the collision energy must be larger than the
threshold energy for excitation; (iii) the collision must actually lead to an excitation, and finally
(iv) the decay must happen quickly enough that another collision doesn’t lead to de-excitation
without a photon.

The collisional nature of this process means that the rate of cooling depends on the rate of col-
lisions between two species. Therefore, quite generally, the cooling rate scales as the product of
the densities of both species (this fails if the density is so high that collisional de-excitation is
important), so that the cooling rate is often written in the form ninjΛ(T ). In the following, we
will consider a number of different physical cooling mechanisms.

Cooling by ions and atoms

In this case, the collision leads to an electronic excitation, generally from the ground state to the
first excited state. There are a large number of such transitions, and here we just highlight a few
of the more important ones in the ISM:

ion/atom ∆E/k
HI ∼ 104 K
SiII 413 K
OI 228 K
CII 92 K

This table also include the excitation energy divided by the Boltzman constant k to make it have
units of degrees K. This is the energy required in order to excite the electron and generally the
gas must have this temperature or larger in order for cooling to be effective. We see that there
is a sequence of atoms which permit cooling to lower and lower temperatures (in fact, there are
many more transitions than in this table). For example, hydrogen line cooling (the Lyman-alpha
transition between the n = 2 and n = 1 states) is very effective down to temperature of about 104

K, but cannot cool the gas below that. As the table shows, other atomic states can pick up where
hydrogen leaves off, although we expect the cooling rate to be lower, in large part because the
other atoms and ions are much rarer than hydrogen. The last entry in the table, corresponding
to once ionized carbon, is one of the most important coolants for the low-temperature ISM but
even this does not cool the gas below about 100 K. To go to the lowest temperatures, we must use
molecules.

The discussion above focuses on electronic transitions from one bound state to another (so-called
“bound-bound” transitions), but there are also bound-free transitions (e.g. recombination) and
free-free transitions. There are a wide range of possible mechanisms, but we focus here on two
which are particularly common. The first is the close passage between an electron and a proton in
which the electron is not captured but does suffer an acceleration. From electromagnetic theory
we know that an accelerated charge will emit radiation and this particular form is known as
Bremsstrahlung. It is particularly important for high temperature gas and is the dominant
cooling mechanism for T > 107 K. If a magnetic field is present, an electron will spiral along field
lines, again leading to photon emission in a process known as synchrotron emission. Synchrotron
emission is a good indicator of the presence of both magnetic fields and high-energy electrons.

Cooling by molecules and dust
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Molecules generally have weaker bonds between the atoms than for electrons within an atom and
so the excited transitions are generally lower in energy. This means that molecules can cool the
gas to lower temperatures. These excited states are generally rotational or vibrational in nature
(where the bond acts like a spring between the atoms). Two important molecules in the ISM are
H2 and CO. These molecules form in dense, cold gas clumps and are commonly referred to as
molecular clouds. While H2 is the most common, it is hard to observe (because it has no dipole
and so emits only via quadrupole transitions) and so most observations are of CO. The rotational
energies of CO are quantized and have the form EJ = BJ(J + 1) where J = 0, 1, 2 . . . is the
quantized angular momentum. The transitions between these states are low enough energy that
they fall in the radio part of the spectrum and are typically labeled by the transition (e.g. the
J = 2 to 1 transition is quite common).

Dust is formed in the dense environments around stars (often in stellar outflows) and consists
of micrometer to millimeter-sized agglomerations of atoms. We have discussed the importance
of dust grains in blocking visible and UV light, which they do very effectively (considering that
they are usually only a few percent of the gas content by mass). However dust grains also emit
radiation in the infrared and although they are not thought to be an important coolant for the
Milky Way’s ISM, they do serve as a reasonable tracer for the distribution of gas in the ISM. In
starburst galaxies, they can block large amounts of UV and optical radiation and in an extreme
population of such objects nearly all of the radiation is emitted by dust (known as Ultra Luminous
Infrared Galaxies, or ULIRG’s for short).

The cooling curve: putting it all together

The cooling processes discussed above are, in general, very complicated and required detailed
calculations based on the density, temperature and ionization state of the gas. However, it is
possible to construct a simplified picture based on observation we made earlier, that generally
the cooling rate depends on the multiplication of two densities, ni and nj . If we assume that
ni = fi(T )n, then we can write the cooling rate (energy loss per unit time per unit volume) as
n2Λij(T ) where Λij(T ) depends only on the temperature. Since all the processes are like this, we
can sum the terms together to get the overall cooling rate:

C = n2Λ(T )

This cooling curve, as it is often called, encodes all of the information about the atomic physics
and the ionization state of the atoms. It assumes that the current abundances can be determined
uniquely based on the temperature, which is clearly incorrect in some cases, but is sufficiently
accurate that it provides a useful guide. In the figure below (from Dalgarno & McCray 1972) we
show this cooling curve (note that the notation in the figure differs slightly from ours – in our
notation, what is plotted is Λ; also there are four different curves in which assumptions about the
properties of the gas are varied – in particular the electron fraction at low temperatures).
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The shape of the cooling curve in different temperature ranges is due the different cooling mech-
anisms which are important at that temperature. For example, the sharp peak just above 104 K
comes from HI cooling, while the cooling below this depends on CII and other ions with lower
excitation energies. At the very highest temperatures, the emission is from Bremsstrahlung. This
figure is from Spitzer (1968).

5.7.2 Heating

Heating in the ISM is partially accomplished by shocks and other mechanisms, but radiative
heating also plays a role, particularly at low temperature. We briefly summarize the primary
heating mechanisms below.

Heating by photo-ionization is one of the most important heating mechanisms, particularly near
massive stars. A photon with energy larger than that required to unbind an atom’s electron (e.g.,
for hydrogen this is IH = 13.6 eV) will deposit the extra energy it has (i.e. E − IH) in the form of
kinetic energy. This kinetic energy will be shared with the rest of the atoms in the gas, resulting
in an increase in the temperature. Photonionization of hydrogen is very important, but heating
can also come from the ionization of other atoms (indeed, molecules can by photo-disassociated
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as well). Generally, this sort of heating is most important inside HII regions where high energy
photons are common.

The diffuse gas in the ISM is also heated through collisions with high energy photons (X-rays) and
cosmic-rays. In both cases, the gas is photoionized and some of the extra energy of the photon
is shared as heat. Finally, dust absorbs optical and UV photons, which can free an electron from
the surface of the grain (the photoelectric effect). This electron will generally have some extra
energy which will heat the gas. These two heating mechanisms (cosmic-ray heating and dust-grain
heating) are thought to be the most important heating source in the ISM.

As before, the heating rate is proportional to the density of the two things that need to collide,
but in this case one is an atom in the gas, while another is a photon or cosmic-ray. Therefore, the
heating rate is proportional to a single power of the density: H = Γn, where Γ depends on the
flux of photons or cosmic-rays (and possibly other factors).

5.7.3 Thermal equilibrium

If radiative heating and cooling are the most important heating and cooling mechanisms, then we
can determine the equilibrium temperature of the gas by equating the heating and cooling rates:
H = C. Using our earlier expressions for these rates, we find:

Γ = Λ(T )n
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