

A Bayesian analysis of received wisdom...

Life arose 'quickly' in first few 100 Myrs on Earth...

Evidence for high abiogenesis probability?

A Bayesian analysis of received wisdom...

Life arose 'quickly' in first few 100 Myrs on Earth

Evidence for high abiogenesis probability?

Not necessarily, choice of prior dominates posterior probability...life on Earth could be 1st in universe

However, *one independent* example of abiogenesis would push posterior rate to >1 per Gyr on suitable planets

Where can we look to find an independent abiogenesis?

Where can we look to find an independent abiogenesis?

Mars

· Clear evidence of periods with substantial surface/near surface liquid water

 Increasing evidence of organic deposits (inc. 10 C-atom 'fatty acidlike' compound) in mudstone that could be indigenous (i.e. not meteoritic)

Icy Moons

Good evidence of subsurface liquid zones (morphology, induced magnetic field, plumes).

That water is modestly salty: sodium, calcium (seen in Enceladus plumes and Europa radiation-altered deposits). Some organics, some ammonia in Enceladus plumes.

Europa/Galileo

Enceladus/Cassini

Icy Moons

Latest Cassini result on +/-0.12 degree Enceladus libration indicates *global* ocean

SiO₂ nanoparticles indicate contact with rocks & hydrothermal systems?

That ocean feeds/creates
Saturn's E-ring

Longevity of oceans unknown - could be ancient, maintained by tidal heating and radiogenic heating + insulation (also, ammonia lowers eutectic point)

Altogether, crude models of interiors of water-rich solar system objects (moons, dwarf planets - inc. Pluto, Ceres) suggest ~15 times volume of all Earth's oceans in subsurface environments.

Earth

Titan's seas & shores?

~94 Kelvin surface

Energetically interesting: molecular H₂ reacting with acetylene (C₂H₂) - producing methane(CH₄).

Downward flux of H₂ (produced by photolysis of methane etc. in upper atmosphere) inferred in atmosphere (Strobel et al. 2010), but no accumulation on surface (likewise for acetylene), suggesting something is removing it...

H₂ unreactive in environment, catalyst needed - no obvious mineralogical culprit. Rates are consistent with biological use by methanogenic organisms...although this is **highly speculative** (McKay & Smith 2005)!

Exoplanets

Exoplanets

New Kepler Planet Candidates As of July 23, 2015

The Kepler Orrery III

t[BJD] = 2455723

Radial velocity detections: total 1,952 planets in 1,235 systems.

Kepler: 4,737 planet candidates (inc. 1033 confirmed)

Across all techniques:

300 2-planet systems

98 3-planet systems

49 4-planet systems

15 5-planet systems

2 6-planet systems

2 7-planet systems

Kepler data releases: 70% to 90% planet candidates smaller than Neptune (~20% 'Earth sized' <1.25 R⊕)

0.51 Earth-sized planets per cool star (Porbit<50 days, M*<0.6 Msolar, 0.5-1.4RE)

0.15 Earth-sized planets in 'habitable zone' per cool star

95% confidence of 'habitable' world within 16 light years

An incredible diversity of worlds

Extraordinary diversity of system architectures, and likely

planetary states

Winn et al. 2011

How do we identify and study 'habitable' planets?

Calibrating climate states far from modern Earth using the solar system through time...

ROCKE3D - Based on the GISS Model E2 coupled atmosphere-ocean GCM

Testing the edges of 'habitability' - the outer zones

Neoproterozoic Earth does *not* enter full snowball state at low CO₂, reduced insolation

(Sohl, Chandler, Jonas)

To address 'habitability' we must also couple climate dynamics to spinorbit dynamics...

Total system architecture is therefore a critical ingredient...

Scharf, Armstrong, Barnes 2015

Biosignatures

Primary focus on near future observables: spectroscopic 'markers' (oxygen, methane) in starlight filtered by atmospheres during transit.

But it's HARD - e.g. 'spectrum' of 6.5 Earth mass 'ocean world' GJ 1214b (clouds?)

Unclear if data will allow definitive claims - however, statistics could reveal populations of planets with life versus those without... "These worlds look *different*"

Technosignatures

Pollution? Artificial structures? Thermal output from energy conversion?

Recent survey work of infrared emission from nearby galaxies seems to rule out 'mega' civilizations (farming all stellar energy in a galaxy).

A gloomy assessment: The Great Filter and the Fermi Paradox

- Finding independent life (e.g. on Mars) would indeed boost cosmic abiogenesis probability
- But then where is everyone else?
- Implication is that life simply never gets past a certain point, it never goes interstellar, it is filtered out...
- So finding life on Mars would actually be very bad news! (Bostrom 2008)

An optimistic assessment

We're closer than we've ever been to getting some proper answers

 The Fermi Paradox may simply be due to our still very limited measurements of 'what's out there' and our exceedingly short history (~0.001% age of universe)

New frontier: direct imaging of planetary systems

Measuring abiogenesis probabilities by seeking origins?

What is life?

'Life is a self-sustaining trajectory in state-space' (Cronin & Walker 2015)

Genetics first or metabolism first?

Assume that a biological entity must be able to positively influence the production of its own components (reproduction/maintenance)

For example: finding natural autocatalytic processes necessary for metabolism (chemical species increases its own rate of production without biological catalysts)

Synthetic

Synthetic Biology

Solar System, Meteoritics

Biological history

Early Earth through geophysical records

Modern niche environments

Chemical systems

Origins of Life

Chemical evolution

Exoplanets

Artificial Life

Theory of living states

Scale of aliveness

Historical

Universal