
Astronomy GR6001: Problem Set #2

Due in class on Wednesday, October 6, 2021

Problem 1 (20 points):

The detailed balance argument in the text shows that with an appropriate temperature-

independent relation between the three Einstein coefficients, the radiation spectrum assumes

the Planck shape Bν . Show that if you apply the same detailed balance argument, but

neglect stimulated emission (as classical physicists did before the turn of the last century),

the spectrum can be consistent only with the Wien limit of the Planck function Bν . What

would the relation between the emission and absorption coefficients have to be to predict

correctly this limiting form of the blackbody spectrum? Would the energy density be finite,

if this limit of the Planck function was applied at all frequencies?

Problem 2 (25 points):

Consider a star that is optically thick, so that it is emitting radiation only from a

layer near its surface. Assume that this layer is thin compared to the radius of the star -

i.e., a plane parallel atmosphere. In this problem, you will calculate the specific intensity

emerging from the star along a given ray. Let us measure distance along a ray, using the

monochromatic optical depth τν , defined to increase into the star (note that this differs from

the sign convention used in the equations in the text). Suppose that the source function can

be described by aν + bντν , where aν and bν are (positive) constants, neglecting terms of order

O(τ 2). This is known as the Eddington-Barbier approximation.

(a) Solve the radiative transfer equation to show that the emergent intensity, in the

direction perpendicular to the star’s surface, is Iν = Sν(1).

(b) Repeat the above calculation, for a ray that makes an arbitrary angle θ with respect

to the normal to the stellar surface. Express your result as a function of aν , bν , and µ = cos θ.

Assuming that the temperature gradient is positive (temperature increasing inward), show

that your result produces “limb darkening”.

(c) Integrate Iν appropriately over all directions, to find the total emergent specific flux

Fν , as measured by an observed outside the atmosphere, in terms of aν and bν . Compare your

result to the flux emerging from an isotropic emitter: what is the effective optical depth from

which the flux is escaping ? (This is a good approximation of the continuum photospheric

depth of the Sun).



Problem 3 (25 points):

Consider a ray passing through two discrete patches of matter (otherwise propagating

in vacuum). Both patches contain thermally emitting, homogeneous material, but with

different temperatures (T1 and T2) and optical depths (τ1 and τ2) in the two patches. The

ray first enters patch 1, with the incident intensity Iν(0) = 0. What is the specific intensity

Iobs, observed to emerge from patch 2? Under what conditions do you expect the observed

brightness temperature to be close to T1? To T2?

Problem 4 (30 points):

Before the epoch of reionization, neutral hydrogen in the universe was interacting with

the cosmic microwave background (CMB). In this problem, you will compute the spin tem-

perature of the 21cm line, assuming that the level populations are determined both by atomic

collisions and interactions with the CMB. Recall that the spin temperature TS is defined as
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Assuming equilibrium, detailed balance between the level populations n1 and n0 obey

n0(B01Bν + nk01) = n1(A10 +B10Bν + nk10), (2)

where n = n0 + n1 is the total hydrogen number density, Bν is the specific intensity of the

CMB (which at redshift z has a black-body shape with TCMB = 2.73(1 + z)◦K), and k01
and k10 are the collisional excitation and deexcitation rate coefficients. Detailed balance in

kinetic equilibrium in the absence of radiation imposes the relation n0k01 = n1k10, so that
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where Tg is the gas temperature. Show that the spin temperature is

TS =
TCMB + yTg

1 + y
, (4)

where y is a collisional coupling parameter that depends on n and Tg, y = hν
kTg

n
ncr

. Here k is

the Boltzmann consant and ncr = A10/k10 = 3 × 10−5 cm−3 is the critical density between

radiative and collisional deexcitation. You may use the fact that hν � kT{S,g,CMB}. Note

that at low density TS → TCMB, whereas at high density, collisions couple the spin to the

gas temperature, TS → Tg. Evaluate the spin temperature at z = 20 for the background

universe, assuming that the neutral hydrogen density is n = 10−7(1 + z)3 cm−3. Before stars

formed, the gas temperature followed the CMB temperature (due to Compton scattering)

down to redshift z = 200 [i.e. Tg(z = 200) = TCMB(z = 200)], and subsequently cooled

adiabatically (Tg ∝ (1 + z)2 at z ≤ 200). Is the sky dimmer or brighter at the wavelength

λobs = 21(1 + z)cm than the CMB at this wavelength in the absence any neutral hydrogen?


