
Experimental and Theoretical Studies of the Isotope Exchange
Reaction +  ++ +D H H D H3 2

P.-M. Hillenbrand1,4 , K. P. Bowen1 , J. Liévin2, X. Urbain3 , and D. W. Savin1
1 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA; p.m.hillenbrand@gsi.de, savin@astro.columbia.edu

2 Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, B-1050 Brussels, Belgium
3 Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Received 2019 March 4; revised 2019 April 4; accepted 2019 April 4; published 2019 May 22

Abstract

Deuterated molecules are important chemical tracers of prestellar and protostellar cores. Up to now, the titular reaction
has been assumed to contribute to the generation of these deuterated molecules. We have measured the merged-beams
rate coefficient for this reaction as a function of the relative collision energy in the range of about 10meV–10 eV. By
varying the internal temperature of the reacting +H3 molecules, we found indications for the existence of a reaction
barrier. We have performed detailed theoretical calculations for the zero-point-corrected energy profile of the reaction
and determined a new value for the barrier height of ≈68meV. Furthermore, we have calculated the tunneling
probability through the barrier. Our experimental and theoretical results show that the reaction is essentially closed at
astrochemically relevant temperatures. We derive a thermal rate coefficient of <1×10−12 cm3 s−1 for temperatures
below 75K with tunneling effects included and below 155K without tunneling.

Key words: astrochemistry – ISM: molecules – methods: laboratory: molecular – molecular data – molecular
processes

1. Introduction

Deuterated molecules are important chemical tracers of the
interstellar molecular clouds where stars form. At the ∼10–20K
temperatures typical of these environments, exoergic deuterium-
substitution reactions go forward, but the endoergic hydrogen-
substitution reverse reactions do not, due to the vibrational zero-
point energy (ZPE) of a deuterated molecule lying below that of its
H-bearing counterpart. This fractionation process explains why, in
cold environments, the observed abundance ratios of deuterated
molecules relative to their H-bearing analogs are orders of
magnitude larger than the galactic D/H ratio. Since these findings
became apparent, numerous astrochemical models have been
developed to explain the observations (an incomplete list of
models includes Millar et al. 1989; Rodgers & Millar 1996;
Roberts & Millar 2000; Walmsley et al. 2004; Flower et al. 2006;
Aikawa et al. 2012; Albertsson et al. 2013; McElroy et al.
2013; Sipilä et al. 2013; Kong et al. 2015; Lee & Bergin 2015;
Majumdar et al. 2017).

A particularly important deuterated molecule for tracing the
properties of the cold gas in star-forming regions is H2D

+. Once
the particle density of the cloud reaches ∼106 cm−3, heavy
elements are predicted to freeze onto dust grains. +H3 and its
isotopologues are predicted to become the dominant carriers of
positive charge, a role normally played by metals such as S+ and
Fe+, along with C-, N-, and O-bearing molecules such as HCO+,
H3O

+, and N2H
+ (van der Tak 2006). However, +H3 and +D3 are

not observable at such low temperatures as they have no dipole
moment and lack a pure rotational spectrum. Conversely, H2D

+

and D2H
+ have dipole moments and a pure rotational spectrum

that can be excited at these temperatures. For example, H2D
+ has

been observed in low-mass prestellar cores (Caselli et al. 2003;
Vastel et al. 2004, 2006; Pagani et al. 2009; Friesen et al. 2010),
low-mass protostellar cores (Stark et al. 1999; Caselli et al. 2008;

Friesen et al. 2014), low-mass young stellar objects (Stark et al.
1999; Brünken et al. 2014), and massive star-forming regions
(Harju et al. 2006; Swift 2009; Pillai et al. 2012).
In order to harness the full diagnostic power of H2D

+ for
cold and dense star-forming regions, accurate chemical
abundance models are needed. Measurements of the H2D

+

abundance, combined with these models, can be used to
determine the ionization fraction of the object. This fraction
sets the timescale for the gas-phase chemistry of the gas, as
ion–neutral reactions dominate such chemistry at these
temperatures. Additionally, reliable values for the electron
number density relative to the value of =x n nH , e e2 H2 are
needed to calculate the electron-driven portion of the chemistry
occurring in a cloud (Caselli et al. 2008). The quantity xe is
approximately equal to the ionization fraction, assuming that
the gas is neutral. Lastly, the ionization and electron fractions
determine the influence of magnetic fields on the dynamics of
the object, especially for the ability of the ambient fields to
support against gravitational collapse (van der Tak 2006;
Grenier et al. 2015; Kong et al. 2015).
Of the six reactions identified as being key in the formation

and destruction of H2D
+ in cold and dense star-forming

regions, two reactions involve HD, one involves D2, and two
involve atomic D (Albertsson et al. 2013). Laboratory
measurements exist for the reactions involving HD and D2

(Adams & Smith 1981; Giles et al. 1992; Gerlich et al. 2002;
Gerlich & Schlemmer 2002; Hugo et al. 2009), and the rate
coefficients are thought to be well understood. The same cannot
be said for the two reactions involving atomic D. This is due to
the experimental challenges of generating controlled and well-
quantified beams of atomic D (Bruhns et al. 2010a). Pagani
et al. (2013) also highlighted the fact that reactions with atomic
D have a sizable influence on the chemistry, especially at
steady state when atomic D becomes important. These studies
suggest that our ability to reliably use H2D

+ as a diagnostic for
star-forming regions is hindered by the lack of accurate
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astrochemical data for the reactions of atomic D with +H3
forming H2D

+ and with H2D
+ destroying the molecule.

Here we focus on the H2D
+ formation reaction

+  ++ + ( )D H H D H, 13 2

which is exoergic by 51.51 meV (Ramanlal & Tennyson 2004).
The only theoretical results published for this reaction appears
to be the classical dynamics study by Moyano et al. (2004),
which did not include corrections for the isotope-dependent
ZPE along the reaction path. Their cross-section results lie an
order of magnitude below the Langevin value. They hypothe-
sized that this discrepancy might be reduced when quantum
effects are taken into account. However, Moyano et al. also
predicted that the reaction path possesses a barrier of
Eb=149 meV, and they did not account for the possible
effects of tunneling. So, it is surprising that they report a
nonzero cross section for collision energies below Eb.

To help to resolve this issue, we have carried out laboratory
measurements for Reaction(1). The measurements were
performed using our dual-source, ion–neutral, merged-fast-
beams apparatus (O’Connor et al. 2015b; de Ruette et al.
2016). In addition, we have carried out new theoretical
calculations for the ZPEs for all of the stationary points along
the reaction path, giving an improved value for Eb. Using our
combined experimental and theoretical results, we have
developed a semiempirical model for the reaction cross section,
from which we have generated a thermal rate coefficient for
Reaction(1) for astrochemical models.

The rest of the paper is organized as follows. In Section 2,
we briefly describe the experimental apparatus. The measure-
ment procedure and data analysis are highlighted in Section 3.
Section 4 provides a theoretical description of the reaction path
including the potential energy surface (PES) and the ZPE at all
stationary points. The experimental results are presented in
Section 5 and discussed in Section 6. A summary is given in
Section 7. Throughout the paper, uncertainties are quoted at a
confidence level taken to be equivalent to a one-standard-
deviation statistical confidence level, unless otherwise noted.

2. Experimental Apparatus

We have developed a dual-source, merged-fast-beams
apparatus that enables us to study reactions between neutral
atoms and molecular cations, and to measure the charged
daughter products. The experimental apparatus and methodol-
ogy have already been described in detail in O’Connor et al.
(2015b) and de Ruette et al. (2016). We provide here only a
brief description, emphasizing aspects that are new or specific
to the present study.

2.1. Neutral Beam

The neutral beam is formed by the photodetachment
of a beam of D−, the only bound level of which is 1S0
(Rienstra-Kiracofe et al. 2002). The anions are generated using
a Peabody Scientific duoplasmatron source, accelerated to form
a beam with kinetic energy =-E 12.00 keVD (5.96 keV u−1 or
1.07×108 cm s−1) and guided electrostatically into a Wien
filter. This charge-to-mass filter is used to select the desired
D− beam and remove any other negatively charged particles
extracted from the source. Typical D− currents after the Wien
filter were 3.7 μA. The D− beam is then directed into a

photodetachment chamber by a series of electrostatic ion
optical elements.
In this chamber, the anions pass through a floating cell at a

voltage of Uf. Upon entering this cell, the anions assume an
energy of +-E eUD f , where e is the elementary charge. Within
the floating cell, a few percent of the anions are photodetached
by a ∼1kW laser beam at a wavelength of λ=808 nm (a
photon energy of hν=1.53 eV, where h is Planck’s constant
and ν the photon frequency). This energy lies close to the
maximum of the photodetachement cross section (McLaughlin
et al. 2017) and generates ground-level atomic D via

n+  +- -( ) ( ) ( )S h S eD D . 21
0

2
1 2

We have previously used this technique to produce beams of
neutral atomic H and D for studies of associative detachment
(Bruhns et al. 2010a, 2010b; Kreckel et al. 2010; Miller et al.
2011, 2012). Additional details can be found in O’Connor et al.
(2015a).
The energy of the neutral beam formed is = +-E E eUn D f

and does not change upon leaving the floating cell. The beam is
collimated by a set of two 5 mm apertures separated by a
distance of 3168 mm, one before and one after the photo-
detachment chamber. The current before the first aperture was
3.3 μA. The remaining D− beam after the second aperture is
electrostatically removed and directed into a beam dump,
leaving a pure beam of ground-level D that continues
ballistically into the interaction region.

2.2. Cation Beam

H3
+ is generated using a Peabody Scientific duoplasmatron

and extracted from the ion-source chamber through an aperture
with a diameter of d=0.25mm. The cations are accelerated to
form a beam of energy = =+E E 18.02 keVH i3

or 5.96 keV u−1.
This energy has been selected to velocity match that of the
neutral D beam for Uf=0 V. The beam then passes through a
Wien filter to select the desired +H3 and remove all other cations
extracted from the source. After the Wien filter, the +H3 beam is
electrostatically directed into a set of two 5 mm collimating
apertures separated by a distance of 3069mm. The current
before the first aperture is typically ≈7 μA. The second aperture
is followed by a 90° electrostatic cylindrical deflector. This
deflector merges the cations onto the neutral beam (which passes
through a hole in the outer plate of the deflector and then through
the exit of the deflector into the interaction region). Electrostatic
ion optics after the last collimating aperture and before this
merging deflector are used to maximize the overlap between
both beams in the interaction region.
It is well known that duoplasmatrons form +H3 ions that

are internally excited. The lower limit for this excitation at
∼300 K is due to the water-cooled walls of the duoplasmatron.
The upper limit is the predicted dissociation temperature
of ∼4000 K for +H3 in thermal equilibrium (Kylänpää &
Rantala 2011). Our previous studies of C and O reacting with

+H3 inferred an internal temperature of ∼2500–3000 K by
comparing the measured thresholds for competing channels to
those predicted theoretically (O’Connor et al. 2015b; de Ruette
et al. 2016).
Here we adjusted the source-operating conditions in order to

vary the level of internal excitation. The parameters that we
varied were the pressure inside the duoplasmatron chamber, the
arc current, the magnet current, and the filament current. As we

2
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will discuss in more detail in Section 5, the level of +H3 internal
excitation was most sensitive to the source pressure ps.

We estimated ps from the pressure measured just outside the
source chamber, po. The short distance between the source
aperture and the turbomolecular pump on the system allows us
to treat the problem as two chambers separated by an aperture.
Using the fact that ps?po, the basic formula of molecular
flow through an aperture gives (O’Hanlon 2003)

p
= ( )p p

S

d

m

k T

4 2
. 3s o 2

H

B

2

Here, S=220 l s−1 is the H2 pumping speed of the
turbomolecular pump, mH2 is the H2 mass, kB is the Boltzmann
constant, and T=300 K is the gas temperature. Inserting these
values into Equation (3) yields

» ´ ( )p p1 10 . 4s
4

o

We operated the source at po=(0.72–7.2)×10−5 Torr, with
the gauge calibrated for reading H2. This corresponds to
ps=0.072–0.72 Torr.

2.3. Interaction Region

The interaction region begins near the exit of the merger
deflector, at z=0 mm, where z is the distance along the
overlap of the two beams. The length of the interaction region
is L=1215 mm and is set by the location of the entrance
electrode of an electrostatic chicane, described below. The
profiles of the two parent beams are measured individually
using rotating wire beam profile monitors (BPMs; Seely et al.
2008), one near the beginning of the interaction region at
z=280 mm and the other near the end at z=1090 mm. The
measured profiles are used to calculate the mean overlap factor
of the parent beams, áW ñ( )z , as well as the bulk angle between
them, θbulk. A Faraday cup can be inserted between the two
BPMs to measure the cation beam current. Typical ion currents
at this point were Ii≈1.1 μA. For Uf=0 V, daughter H2D

+

ions form in the interaction region with an energy given by the
initial =+E 18.02 keVH3

plus ED=12.00 keV and minus the
energy of the replaced H atom, EH=6.01 keV, resulting
in =+E 24.01 keVH D2 .

2.4. Signal Detection

After the interaction region, the desired daughter products
are separated from the parent beams by a series of electrostatic
analyzers. Using electrostatics allows us to analyze charged
particles based on their kinetic energies. The first analyzer is a
chicane, consisting of a series of four pairs of parallel plate
electrodes. These deflect the charged particles in the horizontal
direction. For each pair of plates, ℓ, one was set to a voltage
+Uℓ and the other to −Uℓ. The orientation of the chicane
deflection has been rotated 90° from the configuration used in
O’Connor et al. (2015b) and de Ruette et al. (2016).

In our previous work, we used the chicane to deflect the
parent cation beam into a Faraday cup located after the first
electrode, while guiding the product ions back onto the optical
axis of the chicane, as defined by the neutral beam trajectory.
However, the geometry of the Faraday cup location requires a
large mass difference between the parent and product ions. This
could not be fulfilled in the present experiment. So, the +H3
beam current, Ii, was measured at the beginning and end of

each setting of Uf during data acquisition, typically a 10s
interval. The current was measured by applying a suitable
voltage to the entrance electrode of the chicane. At this voltage,
the transmittance of the cation beam from the interaction region
to the chicane Faraday cup was 100%. During the H2D

+ signal-
collection portion of the data-acquisition cycle, the voltage on
the entrance electrode was set to transmit the product ions
through the chicane.
The daughter H2D

+ ions are directed by the chicane into the
final analyzer. This consists of a series of three 90° cylindrical
deflectors, each with a bending radius of ≈137 mm: a lower
cylindrical deflector (LCD), a middle cylindrical deflector
(MCD), and an upper cylindrical deflector (UCD). The outer
plate for each cylindrical deflector was set to a voltage of +Uℓ
and the inner plate to-Uℓ. In contrast to our previous work, all
three deflections are now arranged in one vertical plane. The
LCD and MCD together form a bend of 180° and the UCD
provides a 90° bend in the opposite direction. A slit with a gap of
5 mm is positioned at the focus at the exit of the MCD to help
suppress any background. This background is due, in part, to +H3
ions that make their way out of the chicane and into the final
analyzer. The rear deflector pair of the chicane is used to correct
for slight misalignments of the beam perpendicular to the vertical
deflection plane of the final analyzer. The transmittance from the
interaction region to the exit of the UCD was measured at
Ta=90%±5% using a proxy cation beam at the energy of the
signal ions and a Faraday cup after the exit of the UCD.
Product ions are counted after the exit of the UCD using a

channel electron multiplier (CEM) with an efficiency of
η=99%±3%. A repeller grid is located in front of the
CEM and biased negatively to repel electrons. The geometric
transmittance of this grid is Tg=90%±1%. Typical H2D

+

signal count rates were S≈20 s−1. The voltages on the
chicane exit electrode, LCD, MCD, and UCD were scanned to
determine the optimal settings for signal collection. Represen-
tative scans are shown in Figure 1 for Uf=0 V.
The trajectory of the H2D

+ products is determined by the
voltages applied to the four deflector pairs of the chicane and
the three deflectors of the final analyzer. During data
acquisition, we typically scan Uf to vary Er. This also varies

+EH D2 , and the various deflector voltages must be scaled
accordingly. Denoting the deflectors from the entrance
electrode of the chicane to the UCD by Uℓ, with ℓ=1–7, we
scale Uℓ versus Uf as

= +
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )U U U

eU

E
0 1 . 5ℓ ℓf

f

0

Here, E0=24.01 keV is the H2D
+ energy for Uf=0 V. These

settings were routinely confirmed with signal scans similar to
those shown in Figure 1.

2.5. Neutral Current

The neutral D beam travels ballistically from the interaction
region, through the chicane, into the entrance aperture of the
LCD, through an exit hole in the outer plate of the LCD, and
into the neutral detector. The transmission of the neutral beam
from the interaction region to the neutral detector, dubbed the
neutral cup (NC), is Tn=95%±3%, as measured using
proxy ion beams.
The neutral particle current, In, is measured in amperes. The

neutral beam strikes a target inside the neutral cup, which is
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configured to collect the resulting secondary emission of
negative particles from the target (Bruhns et al. 2010b). This
neutral cup can also be configured externally to serve as a
Faraday cup for ion current measurements. The measured
neutral current is given by

g
= ( )I

I

T
, 6n

NC

n

where INC is the negative particle current measured by the
neutral cup and γ is the mean number of negative particles
emitted by a neutral particle striking the target. For our work
here, typical neutral D currents were In=43 nA.

We measured the value of γ using collisional detachment of
the D− beam on a gas target, in this case the interaction region
filled with Ar at a typical pressure of 6×10−4 Torr, using a
pressure gauge calibrated for Ar. The resulting D beam was
measured in the neutral cup. The remaining D− beam was

deflected by the LCD into the MCD (which had no applied
voltage), passed through a hole in the outer plate of the MCD,
and was measured in a Faraday cup, dubbed the upper cup
(UC). The transmittance of the D− beam from the interaction
region to the upper cup was measured to be Tu=65%±2%.
Baseline measurements were also carried out for a residual gas
pressure of 8×10−8 Torr, using the same Ar-calibrated gauge.
The resulting value of γ is given by

g
s
s

= +
D
D

⎛
⎝⎜

⎞
⎠⎟ ( )I

I

T

T
1 . 7DED

SED

NC

UC

u

n

ΔINC and ΔIUC represent the measured current changes in the
neutral cup and upper cup, respectively. Each of these needs to
be corrected for by the transmittance from the interaction
region to the corresponding cup: Tn and Tu, respectively. We
also accounted for the unmeasured D+ cations generated by the

Figure 1. Voltage scans of the electrostatic analyzers for =U 0 Vf for the (a) rear deflector pair of the chicane, (b) LCD, (c)MCD, and (d) UCD. For these scans, each
voltage was set to =∣ ∣U 0.439ℓ , 4.271, 4.526, and 4.182 kV, respectively, when not being scanned. Shown are the normalized counts for the different phases of the
measurement cycle, which provide unambiguous background subtraction. For N1 (blue squares), only the D beam is on. For N2 (red upward triangles), both beams are
on. For N3 (green diamonds), only the +H3 beam is on. For N4 (purple downward triangles), both beams are off. The background-corrected signal (black circles) is
given by NS (see Section 3.1). The dashed lines are normalized fits using a modified Gaussian function s- -[ ( ) ( )]U Uexp 20

6 6 , where U is the applied voltage, U0

the central voltage, and σ a fitting parameter. These fits are given as a guide to the eye.
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double electron detachment (DED) of D− on Ar. The ratio of
the DED cross section, σDED, compared to that for single
electron detachment (SED), σSED, is σDED/σSED=3.5%. This
is based on the compilation of Phelps (1992) and assumes that
the cross sections for D− on Ar are the same as those for H− at
matched velocities.

We measured γ over several measurement series spread out
over a number of weeks and also for a range of values for En.
At 12.00 keV, we found γ=1.6±0.1. As a function of En,
the data showed a small linear dependence of

g = +( [ ]) ( )E EkeV 0.113 0.244 8n n

within the energy range of En=11.1–13.0 keV studied here.
We accounted for this variation in the data analysis of our
results.

3. Measurement and Analysis

We begin by explaining the signal determination
(Section 3.1), followed by the data-acquisition procedure
(Section 3.2), which has been enhanced since the work of
O’Connor et al. (2015b) and de Ruette et al. (2016). Next, we
discuss the relative translational energy scale of the collision
(Section 3.3). Then we review how we evaluate the corresp-
onding merged-beams rate coefficient (Section 3.4). Again, we
provide here only a brief description, emphasizing aspects that
are new or specific to the present study. Additional details can
be found in Bruhns et al. (2010b) and O’Connor et al. (2015b).

3.1. Signal Determination

In order to extract the desired signal, the two beams are
chopped on and off, but out of phase with one another. This
enables us to unambiguously subtract the various backgrounds.
The chopping cycle is governed by the laser operating in a
square-wave mode: on for 5 ms and then off for 5 ms. The +H3
beam is electrostatically chopped with the same time structure,
but delayed by a phase shift of 2.5 ms. This chopping cycle is
repeated for 10 s at a given value of Uf.

In the first phase of this chopping cycle, only the D beam is
on and the counts are denoted by N1. In the second phase, both
beams are on and the counts are N2. In the third phase, only the

+H3 beam is on and the counts are N3. In the last phase, both
beams are off and the counts are N4. The desired signal counts
Ns are given by

= - - + ( )N N N N N 9S 2 1 3 4

and the corresponding statistical uncertainty by

d = + + +( ) ( )N N N N N . 10S 1 2 3 4
1 2

The signal rate S is given by dividing NS by the corresponding
integration time of τ=2.5 s at each step in the chopping pattern.
The fractional statistical uncertainty in S is given by δNS/NS.

3.2. Data Acquisition Procedure

Each data run typically consists of 10 scans of Uf

(i=1–10), which is swept through a series of 20 voltage
steps ( j=1–20) for each scan. A run corresponds to about one
hour and is comparable to the timescale over which both beams
are stable.

The Uf scan ranges used here were −900 to 1000 V, −450 to
500 V, and −225 to 250 V. Measurements of the ion and

neutral beam profiles are performed independently at the
beginning and end of each sweep. For the neutral beam
measurements, we found no significant variation over the range
scanned in Uf. So, we set Uf=0 V for the neutral beam profile
measurements. The data presented below represent the average
of various accumulated data runs over the three Uf ranges listed
above.
Signal is collected within a predefined sweep range for Uf by

automatically incrementing the floating cell voltage every 10s.
The voltages of the chicane and the final analyzer are scaled
synchronously with each step of the floating cell voltage, as
given by Equation (5). This configuration is to be contrasted
with our earlier work where data were collected at just one
floating cell voltage for each data run (O’Connor et al. 2015b;
de Ruette et al. 2016).
As mentioned earlier, it is not possible to set the voltages on

the chicane to simultaneously direct the +H3 into the chicane
Faraday cup and transmit the product H2D

+ into the final
analyzer. To overcome this, we measure the +H3 current, Ii,
before and after each 10 s increment at a given Uf using the
chicane Faraday cup as described earlier. We have confirmed
that the ion beam is sufficiently stable over a 10s increment to
justify this.

3.3. Relative Translational Energy and Beam Overlap

The relative translational energy Er in the center-of-mass
system for monoenergetic beams intersecting at an angle θ is
given by (Brouillard & Claeys 1983)

m q= + -
⎛
⎝⎜

⎞
⎠⎟ ( )E

E

m

E

m

E E

m m
2 cos . 11r

n

n

i

i

n i

n i

Here, mn=2.015 u and mi=3.023 u are the masses of the D
atom and the +H3 ion, respectively (Linstrom & Mallard 2018).
The reduced mass is defined as

m =
+

( )m m

m m
. 12n i

n i

For our work here, we have μ=1.209 u. The corresponding
relative velocity is

m
= ( )v

E2
. 13r

r

In our experiment, the two beams interact over a range of
angles and with a spread in kinetic energies. The former is
determined by θbulk between the two beams combined with
the divergences of each beam. The latter is determined by the
±10 eV energy spread of each source. We have calculated the
resulting Er using a Monte Carlo particle ray tracing as
described in Bruhns et al. (2010b) and O’Connor et al. (2015b).
These simulations were adjusted to match the constraints from
the various collimating aperture dimensions and locations in
the apparatus as well as from the measured beam profiles.
Specifically, the simulations were adjusted to reproduce the
measured typical bulk angle of θbulk=0.39±0.19 mrad,
beam profiles, overlaps, and the overlap integral of áW ñ =( )z

 -2.81 0.19 cm 2, which was calculated from the beam
profiles measured along the interaction region as described
by Bruhns et al. (2010b) and O’Connor et al. (2015b).
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The simulations also yield a histogram of relative transla-
tional energies throughout the interaction volume. We take the
mean of this distribution as our experimental Er and the one-
standard-deviation spread of the histogram, ΔEr, as our relative
energy uncertainty. The resulting distribution of Er for a given
Uf is nearly Maxwellian for low values of ∣ ∣Uf and converges to
a Gaussian distribution for larger values of ∣ ∣Uf .

Additional fine-tuning of the Er scale is achieved by
comparing the results measured when the neutrals are faster
than the ions (Uf>0 V) to when they are slower (Uf<0 V).
The results should be symmetric in magnitude around Uf=
0 V. We find that the expected symmetry requires applying a
small correction of +6 V to Uf. We attribute this to slight
differences in the plasma potentials between the D− and +H3
duoplasmatron sources. Taking this into account in our
simulations results in a calculated minimum experimental
Er=9±7 meV, corresponding to a translational temperature
of ≈70 K. The highest collision energies studied correspond to
10.8±0.1 eV and 11.8±0.1 eV for Uf=−0.9 kV and
1.0 kV, respectively.

3.4. Merged-beams Rate Coefficient

We measure the cross section, σ, for Reaction(1) times the
relative velocity, vr, between the collidors convolved with the
energy spread of the experiment. The merged-beams rate
coefficient and corresponding uncertainty for a given Uf scan i
and voltage step j is given by

s
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t h
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Here, the velocities vn and vi are those of the neutral and
molecular ion beams, respectively, and are calculated using the
corresponding beam energies. The other variables have been
defined previously. We measure each of the quantities on the
right-hand side of Equation (14), enabling us to generate
absolute results, independent of any normalization.

Typical values of the experimental parameters going into
Equation (14) and their uncertainties are summarized in
Table 1. The neutral current is given by the average over the
10 s period j and the ion current by the average of the
measurements before and after this period. áW ñ( )z is taken from
the average of all overlap measurements in a given data run,
typically 11. Those quantities that varied between the steps of a
scan are grouped under “Nonconstants” in Table 1 and those
that remained constant throughout all runs are grouped under
“Constants.”

In order to calculate sá ñv jr and the corresponding uncertainty
for a given data run, we used the unweighted average of the
results from all voltage scans i, given by

s
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Various data runs were combined using a statistically weighted
average of all measured sá ñv jr at the same Uf step (e.g.,
O’Connor et al. 2015b). Finally, the values of Er and ΔEr were
assigned to each value of Uf, based on the average overlap and
bulk angle from all data runs, as described in Section 3.3.

4. Theoretical Approach

4.1. Energy Profile of the Reaction Path

The six-dimensional Born–Oppenheimer (BO) electronic
PES of the +H4 cation defines the energy landscape governing
the dynamics of the isotopic exchange reaction

+  ++ + ( )X H XH H, 163 2

where X=H or D.
For the X/H exchange reaction, a wave packet propagating

on this PES will follow a route connecting the entrance channel
to the exit channel. Along this path, the system will cross
stationary points located on this surface (global/local minima
and transition states). The relative energies of these critical
points and the minimum energy path linking them define the
BO-energy profile of the reaction. This profile is useful for
discussing our experimental results and how they are affected
by the presence of the potential energy barrier along the
reaction path.
The height of the barrier with respect to the entrance channel

corresponds to the minimum energy classically required to
observe reactive trajectories. However, quantum mechanics
requires that the total internal energy of the system be greater
than or equal to its vibrational ZPE. It is therefore necessary to
add the ZPE values of the different stationary points to the
corresponding BO energies, leading to a vibrationally adiabatic
minimum energy path (Jankunas et al. 2014). We refer to this
below as the ZPE-corrected energy profile. The corrected
barrier height can then be used to predict the minimum
collision energy at which a nonzero cross section would be
observed, in absence of quantum tunneling. Note that the BO

Table 1
Typical Experimental Values for Equation (14) with Corresponding

Uncertainties

Source Symbol Value Uncertainty
(%)

Nonconstants:
Signal rate S 20 s−1 �9
(statistical)
D velocity vn 1.07×108 cm s−1 =1
D current In 43 nA 5
H3
+ current Ii 1.1 μA 5

Overlap factor áW ñ( )z 2.8 cm−2 10

Neutral detector γ 1.6 6
efficiency
Constants:
H3
+ velocity vi 1.07×108 cm s−1 =1

Analyzer Ta 0.90 5
transmission
Grid Tg 0.90 1
transmission
Neutral Tn 0.95 3
transmission
CEM efficiency η 0.99 3
Interaction L 121.5 cm 2
length

Total systematic uncertainty 15
(excluding the signal rate)

Note.The total systematic uncertainty (excluding the statistical error) is
calculated by treating each individual uncertainty as a random sign error and
adding all in quadrature.
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PES and the resulting energy profile are independent of the
nuclear masses and are identical for the X=H or D reactions.
However, the corresponding ZPE-corrected profiles acquire the
mass dependency of the vibrational energies and are thus not
identical for X=H and D.

Below, we determine the ZPE-corrected energy profiles from
ab initio calculations. For this we build on previously published
ab initio work characterizing the +H4 BO PES (Jiang et al. 1989;
Álvarez-Collado et al. 1995; Moyano et al. 2004; Alijah &
Varandas 2008; Sanz-Sanz et al. 2013).

4.2. Topography of the +H4 PES

The global topography of the +H4 PES is well known. The
stationary points have been characterized (energies and
geometries) at different levels of ab initio theory, and the
convergence toward exact energies has been carefully inves-
tigated (Moyano et al. 2004; Alijah & Varandas 2008; Sanz-
Sanz et al. 2013). Harmonic vibrational frequencies and the
corresponding ZPE values have been calculated, but only for
the +H4 isotopologue (Alijah & Varandas 2008; Sanz-Sanz et al.
2013). Global analytical PESs have also been interpolated from
ab initio points, first by Moyano et al. (2004) at a medium level
of theory and later by Sanz-Sanz et al. (2013) at a higher level.
These calculations predict the energy path describing the X/H
exchange reaction.

The successive molecular rearrangements occurring along
the reaction coordinate during the exchange reaction are
illustrated schematically in Figure 2. The X atom (H or D)
collides with +H3 and forms an equilibrium structure, Min1, in
which X is weakly bound to the +H3 moiety. The X/H
exchange is made possible by the transformation of Min1 into a
BO-equivalent minimum structure, Min2, where X is now
embedded into a triangular XH2

+ structure, to which a H atom is
weakly bound. This transformation implies the passage through
a transition state, TS3, using the nomenclature of previous
works cited above. The dissociation of Min2 leads to the final
products of XH2

+ and H. Note that the permutational symmetry
arising from the identical hydrogen atoms of +H3 allows the
wave packet to explore with an equal probability several
pathways equivalent to the one depicted in Figure 2. As the
permutational properties do not depend on X, it follows that
both the H/H and D/H exchange reactions share the same
pathways. However, as we show below, the ZPE-corrected
energies are affected by the D/H isotopic substitution.

4.3. Ab Initio Results

The ZPE-corrected energy profiles for the X=H and D
reactions have been calculated using the ab initio theory carried
out with the Molpro program package (Werner et al.
2012, 2015). The method we have used consists of a complete
active space self-consistent field (CASSCF) calculation
(Knowles & Werner 1985; Werner & Knowles 1985) followed

by an internally contracted multireference configuration interac-
tion (ic-MRCI) calculation (Knowles & Werner 1988; Werner &
Knowles 1988). This highly correlated CASSCF/ic-MRCI
approach was also adopted in previous works by Alijah &
Varandas (2008) and Sanz-Sanz et al. (2013). For our work, we
used a large active space including 16 molecular orbitals and the
extended Dunning’s augmented correlation-consistent polarized
quintuple-zeta (aug-cc-pV5Z) basis set (Dunning 1989; Kendall
et al. 1992), producing energies close to the corresponding full
configuration interaction limit (within 2×10−7Eh, where Eh is
the Hartree energy). The equilibrium geometries and the
harmonic vibrational frequencies of the different stationary
points were calculated for the X=H and D isotopologues.
Our results for the calculated energy profiles, one without the

harmonic ZPE corrections and two with the corrections, are
shown in Figure 3. The BO electronic energy for the entrance
channel is the same for both X=H and D. The corresponding
−1.8436004Eh has been subtracted out and the difference
expressed in meV, so as to better show the relative energy
variations in the stationary points and the exit channel.
Table 2 gives the calculated energies for this energy profile,

with the entrance energy subtracted out. Our calculated BO
electronic energy for Min1 and Min2 is −1.8525663Eh. For
TS3, it is −1.8383087Eh. Our ZPE-uncorrected results are from
the calculated ic-MRCI (16 active orbitals)/aug-cc-pV5Z
energy differences. Our ZPE-corrected results add the ZPE
energy differences to this, using the ZPE values given in
Table 3 and the rotational ZPE for +H3 (as explained below).
The barrier height, Eb, for Reaction(1) is highlighted in bold.
Also given in Table 2 are the energies for both Min1 and Min2

Figure 2. Molecular rearrangements along the minimum energy reaction path
of the exchange reaction involving an X atom (H or D, shown in red) colliding
with +H3 . The molecular plane is maintained along the entire path. See the text
for details.

Figure 3. Our calculated energy profiles of the exchange reactions. The black
dashed line is the BO-energy profile (ZPE uncorrected), and the colored lines
correspond to the ZPE-corrected profiles (blue solid line for X=H and red
solid line for X=D). The molecular structures are shown at all stationary
points, with the X atom colored in red. See the text for details.
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from Moyano et al. (2004) and Sanz-Sanz et al. (2013), and the
exoergicity from Ramanlal & Tennyson (2004).

The ZPE values have been derived using the vibrational
frequencies ωs for each oscillating mode listed in Table 3. The
values of ωs have been calculated using the harmonic oscillator
approximation. Real values for ωs are listed in order of
increasing frequency. For TS3, the corresponding imaginary
frequency (wim discussed below) is given before the real ωs

values.
The number of normal modes of an N-atom nonlinear

molecule is equal to -N3 6. Hence, there are six and three
frequencies describing the vibrational motion of +H4 and +H3 ,
respectively. The energy for a vibrational level corresponding
to the set of quantum numbers v1, v2, K, -v N3 6 is given, with
respect to the bottom of the potential well, by the sum of the
individual harmonic oscillator energies:

å w¼ = +-
=

-
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )E v v v v, , ,

1

2
. 17N
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This expression provides the ZPE value when all of the
oscillators s are set to their vs= 0 ground state, giving
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In order to calculate the ZPE for transition states, the
summation in Equation (18) is limited to real frequencies.
We also note that for +H3 , we use the rotational ZPE, which
takes into account the fact that the = =+( )J KH 03 ground
rotational state is forbidden by the Pauli principle (Ramanlal &
Tennyson 2004), where J is the rotational angular momentum
quantum number and K is the projection of J along the
symmetry axis of the system. The first allowed level,
J=K=1, lies 64.12 cm−1 above the nominal ground state

(Morong et al. 2009; Pavanello et al. 2012; Jaquet 2013). The
rotational ZPE that we use here is the sum of the ground state
ZPE and the energy of this first allowed level.
Particularly important for understanding Reaction(1) is TS3.

This is a first-order transition state and is thus characterized by
a single imaginary frequency, wim, highlighted in bold in
Table 3. The value of wim determines the negative curvature of
the PES at the top of the reaction barrier. It is thus related to the
barrier width and consequently to the tunneling probability,
which we calculate in Section 6.4.2. The normal coordinate
associated with wim for H3D

+ is depicted in Figure 4,
illustrating the reaction coordinate TS3 that connects Min1 and
Min2. Hydrogen atoms Ha and Hb are moving in parallel in the
general direction toward the deuterium atom D, to form a
triangular H2D moiety. Meanwhile, hydrogen atom Hc travels
in the opposite direction to form the elongated Hb–Hc bond of
Min2. Inverting the direction of the arrows leads to Min1 on the
other side of the barrier, with the formation of the HaHbHc

triangle and the elongated D–Ha bond.
Comparing our +H4 ZPE-uncorrected energies to the

previously published ab initio calculations, we find excellent
agreement with the work of Sanz-Sanz et al. (2013) using a
similar level of theory, as shown in Table 2. This largely
confirms the convergence of our MRCI expansion. We find
poorer agreement with the results of Moyano et al. (2004).
There are no previously published results for H3D

+ for us to
compare to our ZPE-corrected energies.
For the vibrational frequencies, we again find excellent

agreement with the +H4 results of Sanz-Sanz et al. (2013), as
can be seen in Table 3. The agreement is to within <0.7 cm−1,
apart from a probable misprint for one of their frequencies for
Min1,2 (see the footnote of Table 3). Larger discrepancies are
observed compared to the calculations of Alijah & Varandas
(2008), which were carried out using a smaller number of
active orbitals. Even so, their results are only discrepant by
<2.7 cm−1 for all frequencies, except for wim for TS3, which
differs by 7.6 cm−1. Lastly, our frequencies for the +H3
isotopologues agree to within <2.5 cm−1 with the variational
calculations of Lie & Frye (1992).

4.4. Further Theoretical Considerations

4.4.1. ZPE-corrected Profiles

The ZPE corrections to the characteristic energies of the
collision profiles (see Table 2) are calculated with respect to the
ZPE of the +H3 in the entrance channel. These corrections
significantly alter the shape of the BO-energy profile, as shown
in Figure 3. For X=H, the well depths and the barrier height
are reduced by 21% and 33%, respectively. For X=D, the
depth of Min1 and the barrier height are reduced by 16% and
53%, respectively, but the depth of Min2 is almost unchanged.
These changes arise from the ZPE values, which are ordered
for X=H as

= > >+( ) ( ) ( ) ( ) ( )E E E EMin Min H TS , 19zp 1 zp 2 zp 3 zp 3

and for X=D as

> » >+( ) ( ) ( ) ( ) ( )E E E EMin H Min TS . 20zp 1 zp 3 zp 2 zp 3

This ordering is a result of the decrease in the ZPE versus
molecular structure. The ZPEs of the minima are high because

Table 2
Characteristic Energies for the Profiles in Figure 3

Property ZPE-uncorrecteda ZPE-correcteda

X=H X=D

Potential well Min1 −243.98 −193.19 −204.66
Min2 −243.98 −193.19 −245.74
Min1,2 −239.41b L L
Min1,2 −243.95c L L

Barrier height TS3 143.99 95.81 67.98
TS3 149.25b L L
TS3 144.00c L L

Exoergicity 0.00 0.00 −57.80
−54.10d

−51.51e

Notes.The potential well, barrier height, and exoergicity (all given in meV)
correspond respectively to the energies of the minima, transition state, and exit
channel, with respect to the entrance channel. The resulting barrier height, Eb,
and the relative energy of the exit channel, ΔEzp, are in bold.
a From this work, unless otherwise specified.
b From Moyano et al. (2004).
c Calculated from Sanz-Sanz et al. (2013).
d Includes the difference in electron binding energy for atomic H and D of
3.70 meV (Kramida et al. 2018), as was done by Ramanlal & Tennyson (2004).
e From Ramanlal & Tennyson (2004).
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of the strong three-atom cycle, while those of the transition
states are low, because of the weaker open structure. +H3 is an
intermediate case, with one fewer hydrogen, but it also has a
strong three-atom cycle. Lastly, the case of Min2 for X=D is
fortuitous, a result of the deuteration effect, as explained below.

4.4.2. Effect of Deuteration

For X=H, the ZPE-corrected profile is symmetric with
Min1 and Min2 being isoenergetic. But for X=D, the profile is
asymmetric, with a potential well deeper for Min2 than for
Min1. In general, the energy of the vibrational motions of the

+H4 isotopologues are decreased by deuteration. This can be
seen in the reduction of the ZPE for the minima of H3D

+

compared to those for +H4 . The reduction is larger for Min2,
where the D atom affects the high-frequency vibrations of the
three-atom cycle, than it is for Min1, where the D atom acts on
the low-frequency vibrations of the weak X–H bond. As a
result, the ZPE value for Min2 is fortuitously very close to the
ZPE of +H3 . This explains the quasi-equality of the BO- and
ZPE-corrected energies at the Min2 position, as reported in
Equation (20) and shown in Figure 3.

Deuteration also generates the exoergicity, ΔEzp, of the
X=D reaction. The resulting ΔEzp, given in Table 2, is equal
to the difference between the rotational ZPE for +H3 and the
ZPE for H2D

+.

4.4.3. Anharmonic and Nonadiabatic Effects

Our calculated energy profiles provide insight into the
collision dynamics of the + +D H3 reaction system. But to
make the computations readily tractable, we have included
neither the anharmonic effects in the ZPE calculations nor
nonadiabatic corrections to the BO PESs. Still, these
approximations are expected to have only a small effect on
the calculated stationary energies and exoergicity, leading to
only insignificant changes in our understanding of the reaction
dynamics. The correction due to anharmonic effects amounts to
5% for the value of the ZPE difference between the +H3
entrance channel and the H2D

+ exit channel, as estimated by
comparing our exoergicity to the anharmoic results of
Ramanlal & Tennyson (2004; see our Table 2). Nonadiabatic
corrections to the BO PES are also estimated to be on the order
of ≈10%. These corrections introduce nuclear mass effects that
are ignored within the BO approximation. We expect that these
would probably raise the barrier height slightly, as in the case
of the +H H2 reaction, where an increase of about 7 meV is
observed together with a narrowing of the barrier (Mielke et al.
2005).

5. Merged-beams Rate Coefficient Results

Our measured sá ñvr versus Er is shown in Figure 5. The
results are given for Er≈0.01–10 eV and for four different +H3
source pressures. We attribute the decreasing trend from the
highest sá ñvr data set to the lowest to be due to decreasing
levels of +H3 internal excitation. As the fraction of internally
excited +H3 with energies sufficient to overcome Eb decreases,
fewer ions can react and the measured sá ñvr correspondingly
decreases.
We varied the +H3 internal excitation by adjusting the

duoplasmatron operating parameters: source pressure, magnet

Table 3
Harmonic Vibrational Frequencies and Corresponding ZPE Values from Ab Initio Calculations

Structure Property Referencea ZPE (cm−1) Harmonic Frequencies (cm−1)

Ezp ω1 ω2 ω3 ω4 ω5 ω6

H4
+ Min1,2 4965.2 597.0 607.2 783.3 2221.6 2278.4 3442.8

Min1,2 Alijah & Varandas (2008) 4969 596 608 786 2224 2280 3443
Min1,2 Sanz-Sanz et al. (2013) b 4955 597 607 764c 2221 2278 3443
TS3 4167.0 942.4i 504.4 976.3 2009.0 2080.0 2764.3
TS3 Alijah & Varandas (2008) 4168 950i 506 974 2011 2079 2765
TS3 Sanz-Sanz et al. (2013) b 4167 942i 505 977 2009 2080 2764

H3D
+ Min1 4872.7 476.9 581.5 762.4 2203.9 2277.9 3442.8

Min2 4541.8 555.3 597.7 769.1 1961.4 2170.7 3029.5
TS3 3942.5 875.9i 472.1 875.4 1908.0 2010.0 2619.5

H3
+ 4491.5 2773.2 2773.2 3436.5

Lie & Frye (1992) 4494.3 2774.9 2774.9 3438.8
4555.6d

H2D
+ 4089.4 2409.6 2533.6 3235.7

Lie & Frye (1992) 4088.9 2407.5 2533.4 3236.9

Notes.The imaginary frequency of the transition state, ωim, for Reaction(1) is marked in bold.
a This work, unless otherwise specified.
b See the supplementary material of this reference.
c This value from Sanz-Sanz et al. (2013) is discrepant by 19 cm−1 with respect to our value, while all of their other frequencies agree to within less than 1 cm−1 with
ours. This discrepancy is likley due to a misprint in their work, which also affects their corresponding ZPE value.
d This is the rotational ZPE value, taking into account the rotational excitation of the first allowed +H3 level, which lies 64.12 cm−1 above the vibrational ZPE of
4491.5 cm−1.

Figure 4. Atomic displacements of the mass-weighted normal mode coordinate
of H3D

+ corresponding to the imaginary frequency wim of TS3.
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current, filament current, and arc current. Of these, ps had the
biggest influence on the measured sá ñvr . Variations in the
magnet and filament currents around the typical operating
conditions of 0.45A and 12A, respectively, had only a minor
effect. There was some influence of the arc current on sá ñvr , but
the variation was small between a setting of 1A and our typical
operating condition of 0.75A.

The observed dependence of the +H3 internal excitation on
source pressure can be understood by considering the behavior
of sá ñvr versus ps, as shown in Figure 6 for Er=54±10 meV.
This collision energy is just below Eb. Classically, sá ñvr should
be zero for cold +H3 . Taking tunneling into account, we expect

sá ñ ´ -v 4 10r
11 cm3 s−1 (see Section 6.4.2). However, we

have measured sá ñ ´ -v 4 10r
11 cm3 s−1. Clearly, the +H3 in

our measurement is internally excited. We attribute this to the
gas-phase formation mechanism for the +H3 , namely proton
transfer between +H2 and H2, with at least one of the two being
vibrationally excited. Previous theoretical and experimental
studies into the formation of +H3 have found internal energies of
∼0.5–1 eV (as reviewed in O’Connor et al. 2015b).

As for the pressure dependence shown in Figure 6, initially
sá ñvr decreases with increasing ps. We attribute this to collisions
between +H3 and H2 in the source that cool the +H3 . This
collisional cooling increases with increasing source pressure.
Similar behavior has been seen in experimental photodissocia-
tion studies, which found generally decreasing levels of internal
excitation with increasing source pressure (X. Urbain 2019,
private communication). Then, at ps∼0.5 Torr, sá ñvr begins to
increase with increasing source pressure. We attribute this to
collisional re-excitation of the accelerated +H3 as it passes
through the residual gas downstream of the source. As ps
increases, so does the H2 streaming out of the duoplasmatron
extraction aperture. This increases the residual gas pressure
downstream of the source, enabling collisional re-excitation to

become important. A similar mechanism has been proposed
by Kreckel et al. (2010) to explain the heating of +H3 ions
accelerated from a supersonic expansion ion source.
Clearly, there is a minimum level of internal excitation of +H3

which can be achieved with our current experimental
configuration. A setting of ps≈0.48 Torr appears to provide
the lowest level of internal excitation for our +H3 ions. The
corresponding results are shown by the blue data points in
Figure 5 and listed in Table 4.

6. Discussion

6.1. Competing Channels

There are no exoergic channels to compete with Reac-
tion(1). All of the competing channels are endoergic. Up to the
atomization limit, these include

+  + -+ + ( )D H HD H 1.65 eV, 21a3 2

 + -+ ( )HD H 1.67 eV, 21b2

 + + -+ ( )HD H H 4.30 eV, 21c

 + + -+ ( )H D H 4.34 eV, 21d2

 + + -+ ( )HD H H 6.15 eV, 21e

 + + -+ ( )H D H 6.17 eV, 21f2

 + + + -+ ( )D H H H 8.82 eV. 21g

The threshold energies for these exoergic channels have been
calculated using the dissociation energy of +H3 from Jaquet
(2013), the dissociation energies of diatomic molecules
tabulated by Huber & Herzberg (1979), and the atomic electron
binding energies of Kramida et al. (2018).
These competing channels explain one of the most dramatic

features of our measured merged-beams rate coefficient,
namely the rapid decrease starting near the threshold for the
first two competing Channels 21(a) and (b). We define this
energy as Eth=1.65 eV. A similar behavior at the opening up
of competing channels was seen in our earlier measurements of

+ +C H3 (O’Connor et al. 2015b) and + +O H3 (de Ruette et al.
2016). As for the yet-higher-energy endoergic Channels 21(c)–
(g), we see no clear change in the energy-dependent behavior

Figure 5. Merged-beams rate coefficient, sá ñvr , vs. the relative translational
energy, Er, for a range of +H3 source pressures, ps. The vertical error bars
represent the statistical uncertainty, and the horizontal error bars show the
energy spread at each Er. The data correspond to ps=0.072 Torr (purple
stars), 0.72 Torr (green squares), 0.36 Torr (red large circles), and 0.48 Torr
(blue small circles). The lines show the results of the model given in
Section 6.2 with a fitted +H3 internal temperature of 4400 K (purple dotted line),
2510 K (green dotted–dashed line), 1610 K (red short-dashed line), and 1140 K
(blue solid line). The black long-dashed line is the inferred result for 0 K. The
black crosses show the theoretical data of Moyano et al. (2004). Vertical
markers on the energy axis show the barrier height, Eb, given in Table 2, and
the threshold of the first competing channel, Eth, given in Section 6.1.

Figure 6. Experimental merged-beams rate coefficient, sá ñvr , for Er=
54±10 meV vs. the pressure ps inside the +H3 source. Shown are the
measured data points with statistical error bars. The dashed line is a quadratic
interpolation of the data, included to guide the eye.
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of our results that would correspond to these channels
opening up.

6.2. Cross-section Model for the Experimental Results

We have developed a semiempirical model to describe the
experimental results shown in Figure 5. This model accounts
for the dominant features seen in our measurements: the
inferred reaction barrier, the varying levels of +H3 internal
excitation, and the opening up of competing exoergic channels.
We base our model, in part, on the Langevin-like formalism
given by Levine (2005) for a scattering event with a reaction
barrier. In this model, the cross section is given by σ=πb2,
where b is the maximum impact parameter for which the

reaction proceeds. In addition, all reactions are assumed to
occur with a probability of unity for all impact parameters
equal to or smaller than b.
For the first part of the model, we assume that any internal

excitation energy, Eint, for a given level in +H3 is fully available
to overcome any reaction barriers. Thus, the reaction will go
forward when the sum of Er and Eint is sufficient to overcome
the combined energies of the repulsive centrifugal barrier and
the reaction barrier. This gives

+ + ( )E E
E b

R
E , 22r int

r b
2

b
2 b

where bb is the impact factor taking the reaction barrier into
account and Rb is the radial separation of the reactants at the
location of the reaction barrier. Solving for bb

2 gives

 +
-⎡

⎣⎢
⎤
⎦⎥ ( )b R

E E

E
1 . 23b

2
b
2 int b

r

We take the maximum value of bb
2.

For the second part of the model, we introduce a flux
reduction factor, S(Er, Eint, Eth), to account for the opening of the
competing exoergic channels discussed in Section 6.1. The value
of Er where the first competing channel opens up can be shifted
from Eth toward lower energies by all or part of Eint, depending
on the fraction, f, of Eint that goes into overcoming the threshold
for the competing exoergic channel. By analogy with the so-
called survival factor introduced for dissociative recombination
studies by Strömholm et al. (1995), we can then write

=
< -

+ - +
-

⎧
⎨⎪
⎩⎪

( )

[ ( )]

( )

S E E E

E E fE

a E E fE
E E fE

, ,

1

1

1
,

24

r int th

r th int

r th int
2 r th int

where a and f are adjustable parameters. Putting together
everything so far, we have



s

p
=
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+
-

+
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E E
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b r int

r int b

b
2 int b

r
r int th r int b

Next, we take into account that the upper limit for a reaction
cross section is commonly assumed to be the classical
Langevin value, σL. The Langevin cross section results from
the combined effects of the attractive charge-induced dipole
moment between D and +H3 , and the repulsive centrifugal
barrier, and is given by (Levine 2005)

s p
a

=
⎛
⎝⎜

⎞
⎠⎟( ) ( )E e

E

2
. 26L r

D

r

1 2

Here, αD is the static dipole polarizability of D. This is given
by Schwerdtfeger & Nagle (2019) as a p= ( )a9 8D 0

3
0 , where

a0 is the Bohr radius and ò0 is the vacuum permittivity.
Solving Equations (25) and (26), we find that for a given

value of Eint, σb>σL for Er below some energy that we define
as Ex. As Eint increases, so does the value of Ex. To avoid these
situations, we select the reaction cross section to be the smaller
of σb and σL. In addition, we assume complete scrambling of

Table 4
List of Experimental Merged-beams Rate Coefficients, sá ñvr , with

Corresponding One-standard-deviation Statistical Uncertainties, sDá ñvr , as a
Function of the Relative Translational Energy, Er, with the One-standard-

deviation Width of the Collision-energy Spread,ΔEr, vs. Applied Floating Cell
Voltages, Uf

Uf Er ΔEr sá ñvr sDá ñvr
(kV) (eV) - -( )10 cm s10 3 1

−0.900 10.774 0.120 0.754 0.066
−0.800 8.501 0.107 1.350 0.086
−0.700 6.506 0.093 2.112 0.102
−0.600 4.784 0.080 2.886 0.120
−0.500 3.333 0.066 4.404 0.145
−0.450 2.707 0.060 5.543 0.138
−0.400 2.148 0.053 6.377 0.111
−0.350 1.655 0.047 7.205 0.153
−0.300 1.227 0.040 6.604 0.113
−0.250 0.864 0.034 5.567 0.136
−0.225 0.707 0.031 5.059 0.154
−0.200 0.565 0.028 4.763 0.082
−0.175 0.440 0.025 4.358 0.143
−0.150 0.331 0.021 4.263 0.091
−0.125 0.238 0.018 3.861 0.136
−0.100 0.161 0.016 3.901 0.075
−0.075 0.099 0.013 3.521 0.129
−0.050 0.054 0.010 3.928 0.089
−0.025 0.024 0.008 4.543 0.146
0.000 0.009 0.007 4.918 0.083
0.025 0.011 0.007 4.820 0.152
0.050 0.028 0.008 4.383 0.094
0.075 0.060 0.011 3.905 0.137
0.100 0.108 0.013 3.930 0.075
0.125 0.172 0.016 3.782 0.136
0.150 0.251 0.019 3.891 0.089
0.175 0.345 0.022 4.079 0.139
0.200 0.454 0.025 4.359 0.079
0.225 0.579 0.028 4.908 0.156
0.250 0.719 0.031 5.402 0.104
0.300 1.045 0.037 6.179 0.111
0.350 1.430 0.043 6.968 0.153
0.400 1.876 0.049 6.988 0.118
0.450 2.381 0.055 5.932 0.145
0.500 2.946 0.061 5.003 0.102
0.600 4.251 0.073 3.889 0.140
0.700 5.788 0.084 2.642 0.122
0.800 7.556 0.096 2.033 0.103
0.900 9.550 0.108 1.262 0.834
1.000 11.769 0.119 0.710 0.064

Note.The data listed here correspond to the measurement, where the internal
temperature of the +H3 inferred from our model is 1140 K.
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the nuclei during the + +D H3 reaction. This is guided by the
theoretical approach of Hugo et al. (2009) for isotopic variants
of the + +H H2 3 reaction. For the + +D H3 reaction, only three
of the asymptotic channels lead to the formation of H2D

+. The
fourth outgoing channel leads to the formation of +H3 . To
account for this, we introduce a factor of 3/4 into our reaction
cross section, giving

s s s=( ) [ ( ) ( )] ( )E E E E E,
3

4
min , , . 27r int b r int L r

Now, in order to compare this reaction cross section to our
experimental results, we need to take into account the
excitation energy of each +H3 level involved in the reaction.
We do this assuming that the +H3 levels follow a Boltzmann
distribution,

= - á ñ( ) ( ) ( )g E E Eexp , 28int int int

where á ñEint is a function of the internal temperature Tint of
+H3

and is derived from the partition function Z(T),

á ñ =
¶
¶

( )E k T
Z

Z

T

1
. 29int B int

2

int

We use the parameterization of á ñEint versus Tint given in
Kylänpää & Rantala (2011).

In the penultimate step of our model, we convolve
Equation (27) over Eint. The resulting model cross section is
given by

ò
s

s

á ñ

=
á ñ

- á ñ
¥

( )

( ) ( ) ( )

E E

E
E E E E dE

,
1

, exp . 30

mod r int

int 0
r int int int int

There are four adjustable parameters in our model cross
section: á ñR E a, ,b int , and f. For the other values needed in
Equation (30), we use Eb=67.98 meV from our ab initio
calculations (see Section 4.3) and Eth=1.65 eV from the
calculated energetics for the competing exoergic channels (see
Section 6.1).

Lastly, in order to compare to our measured merged-beams
rate coefficient, we multiplied Equation (30) by vr and varied
the four adjustable parameters to best fit the experimental data.
Given the complexity of the model cross section and the lack of
any clean analytic formula for the cross section, we carried out
a by-eye fit, as opposed to a least-squares fit. This is not
expected to be an issue as our model is overconstrained by the
data. For E Eth, the magnitude and energy dependence of
the data are determined by Rb and á ñEint . Having fixed those
two parameters, we then fit for a and f using the data for Er 
Eth. In each energy range, we fit for two free parameters using
our four sets of measured data, thereby making the system
overconstrained. As an additional constraint, we required that
the fits all use the same set of values for Rb, a, and f, and only
let á ñEint vary between the fits to the four data sets.

Our semiempirical model results are shown in Figure 5. The
model clearly demonstrates all of the major energy dependen-
cies seen in the experimental data, namely (i) a pronounced
minimum in the merged-beams rate coefficient near
Er∼0.1 eV, (ii) a distinct increase in the merged-beams rate
coefficient from this energy until the opening of the competing
exoergic reaction channels, (iii) a subsequent rapid decrease in
merged-beams rate coefficient, and (iv) an overall increase of
the merged-beams rate coefficient with increasing á ñEint of +H3 .

Commenting on the best-fit parameters, we found the best
agreement between the measured data and our model for
Rb=2.53a0. This is relatively close to the geometry of TS3,
which has a distance of 2.87a0 between the D atom and
the center of mass of the +H3 moiety, as deduced from the
optimized geometry computed by Sanz-Sanz et al. (2013).
The best-fit values of á ñEint for the various source conditions are
0.185, 0.32, 0.65, and 1.5 eV, corresponding to Tint=1140,
1610, 2510, and 4400 K, respectively. The case where we
attribute an internal temperature of 4400 K to the reacting +H3
illustrates the uncertainty in our model, as this temperature is
beyond the calculated 4000 K dissociation limit of +H3
(Kylänpää & Rantala 2011). Nevertheless, the inferred range
of +H3 temperatures is in reasonable agreement with previous
estimates from our measurements of C and O reacting with +H3
(O’Connor et al. 2015b; de Ruette et al. 2016). Finally, the fall-
off in the merged-beams rate coefficient that starts near Eth is
best fit with a=0.3 and f=0.2. The value for f suggests that
20% of Eint goes into overcoming the opening up of the
competing exoergic channels, while 80% is transferred into the
daughter products.

6.3. Comparison to Theoretical Cross Sections

The classical trajectory (CT) cross-section calculations of
Moyano et al. (2004) for Reaction(1) are shown in Figure 5,
multiplied by the values of vr that correspond to their reported
collision energies. Surprisingly, the CT data are nonzero below
Eb. It appears that Moyano et al. have only taken into account
the ZPE of the initial +H3 and have not accounted for the
important ZPE changes along the reaction path. As a result,
the reaction complex begins with sufficient energy to overcome
the ZPE-uncorrected reaction barrier. This leads to the
observed unphysical prediction in the low-energy reaction
dynamics, an issue known as the “ZPE-leakage” problem that
is encountered in CT and quasi-classical trajectory (QCT)
simulations (Lu & Hase 1989; Guo et al. 1996). This probably
explains the unphysical CT results of Moyano et al., who
predicted a nonzero cross section at energies below Eb for both
X=H and D collisions.
Several different solutions for solving the ZPE leakage have

been proposed (Guo et al. 1996; Lee et al. 2018, and references
therein). Among these solutions, the ring-polymer molecular
dynamics approach (Habershon et al. 2013) was recently
applied with success to the D+ + H2  HD + H+ reaction
(Bhowmick et al. 2018). This could be an interesting alternative
to CT or QCT calculations for Reaction(1).

6.4. Thermal and Translational Temperature Rate Coefficients

Using our semiempirical model cross section, we can
generate rate coefficients for thermal conditions where the
translational temperature of the gas, Tgas, and the internal
temperature, Tint, are equal. However, the published theoretical
rate coefficients are more appropriately compared to a
translational temperature rate coefficient where Tint=0 K.
Here, we present both rate coefficients. We also present a
theoretical correction to our thermal results to account for the
effects of tunneling through the reaction barrier.
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6.4.1. Model Rate Coefficients

Using our cross-section model, the thermal rate coefficient is
given by

ò

pm

s

=

´ á ñ
-¥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

k T
k T

E E E
E

k T
dE

8

, exp , 31

mod
B
3 3

1 2

0
mod r int r

r

B
r

where T=Tgas=Tint. The value of σmod is from Equation (30)
using our best-fit values of Rb=2.53a0, a=0.3, and f=0.2.
á ñEint is obtained from Equation (29).

The resulting thermal rate coefficient is shown in Figure 7
and given numerically in Table 5. The highest temperature
presented corresponds to the thermal dissociation limit for +H3
(Kylänpää & Rantala 2011). This upper limit corresponds to
Er=0.34 eV, which is well below Eth=1.65 eV for the
competing exoergic channels. Thus, the derived thermal rate
coefficient is largely insensitive to the accuracy of the flux
reduction factor ( )S E E E, ,r int th of Equation (24).

As a self-consistency check, we also note that the thermal
rate coefficient at Tint=1140 K, corresponding to á ñ =Eint
0.185 eV, is nearly equal to the measured merged-beams
rate coefficient for = á ñ =E E 0.185 eVr int . The thermal rate
coefficient is 4.1×10−10 cm3 s−1 while the corresponding
merged-beams rate coefficient is ≈3.7×10−10 cm3 s−1.

In order to enable ready implementation of our results into
computational models, we have fit our model thermal rate
coefficient with the commonly used Arrhenius–Kooij formula,
giving

= ´ -- -⎜ ⎟⎛
⎝

⎞
⎠

( [ ])

( )

( )

k T

T
T

K

4.55 10
300

exp 900 cm s .

32

mod
fit

10
0.5

3 1

This fit is accurate to within 5% over the range
T=100–4000 K. The lower limit is where the rate coefficient
is ≈3×10−14 cm3 s−1 and has been chosen as the rate
coefficient rapidly decreases going to lower temperatures.
We have also calculated the translational temperature rate

coefficient, ktr, for the case where T=Tgas and Tint=0 K (i.e.,
á ñ =E 0 eVint ). These data are plotted in Figure 7 and listed in
Table 5.

6.4.2. Tunneling-corrected Thermal Rate Coefficient

In order to determine the influence of tunneling through the
reaction barrier on the thermal rate coefficient for Reaction(1),
we use the analytic approximation of Eckart (1930) as modified
for an asymmetric barrier by Johnston (1966). The tunneling-
corrected thermal rate coefficient can then be written as

= G( ) ( ) ( ) ( )k T T k T . 33tun mod

Figure 7. Rate coefficient, k, vs. temperature, T. Our model result from
Equation (31) is shown by the black thick line for the thermal case and by the
black thin long-dashed line for the translational case (i.e., Tint=0 K). The
tunneling-corrected thermal model from Equation (34) is shown by the red thin
line. The black crosses plot the CT calculations of Moyano et al. (2004). The
blue short-dashed line presents the Langevin rate coefficient from
Equation (41). The green dotted line gives the rate coefficient commonly used
in astrochemical models (Walmsley et al. 2004). Lastly, the energy of the
reaction barrier, Eb/kB, is indicated on the T axis by the vertical marker.

Table 5
Experimentally Derived Rate Coefficients

T ktr(T) kmod(T) ktun(T)
( )K -( )cm s3 1 a

10.00 L L 4.274[−14]
11.66 L L 5.093[−14]
13.59 L L 6.091[−14]
15.85 L L 7.316[−14]
18.48 L L 8.834[−14]
21.54 L L 1.073[−13]
25.12 L L 1.314[−13]
29.29 L L 1.624[−13]
34.15 L L 2.033[−13]
39.81 L L 2.589[−13]
46.42 L L 3.374[−13]
54.12 L L 4.528[−13]
63.10 L L 6.289[−13]
73.56 L L 9.061[−13]
85.77 L L 1.352[−12]
100.0 2.092[−14] 3.418[−14] 2.076[−12]
116.6 6.944[−14] 1.269[−13] 3.251[−12]
135.9 1.964[−13] 4.009[−13] 5.134[−12]
158.5 4.845[−13] 1.096[−12] 8.085[−12]
184.8 1.063[−12] 2.636[−12] 1.258[−11]
215.4 2.107[−12] 5.664[−12] 1.919[−11]
251.2 3.831[−12] 1.104[−11] 2.861[−11]
292.9 6.468[−12] 1.979[−11] 4.165[−11]
341.5 1.025[−11] 3.312[−11] 5.928[−11]
398.1 1.537[−11] 5.243[−11] 8.273[−11]
464.2 2.201[−11] 7.946[−11] 1.137[−10]
541.2 3.027[−11] 1.166[−10] 1.545[−10]
631.0 4.022[−11] 1.648[−10] 2.059[−10]
735.6 5.189[−11] 2.187[−10] 2.609[−10]
857.7 6.527[−11] 2.788[−10] 3.208[−10]
1000 8.034[−11] 3.465[−10] 3.876[−10]
1166 9.706[−11] 4.234[−10] 4.632[−10]
1359 1.154[−10] 5.106[−10] 5.489[−10]
1585 1.353[−10] 6.090[−10] 6.458[−10]
1848 1.568[−10] 7.186[−10] 7.536[−10]
2154 1.799[−10] 8.376[−10] 8.708[−10]
2512 2.046[−10] 9.618[−10] 9.930[−10]
2929 2.307[−10] 1.083[−9] 1.112[−9]
3415 2.582[−10] 1.190[−9] 1.216[−9]
3981 2.865[−10] 1.264[−9] 1.287[−9]

Note.
a - = ´ -[ ]a b a 10 b.
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Here, G( )T is the tunneling-correction factor and can be
expressed as

òG =
-
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B
ts

f

where P(Ets) is the tunneling probability (Miller 1979). The
computed energy profile of the reaction and the corresponding
normal mode frequencies of TS3, described in Section 4.3,
provide a complete parameterization of the generalized Eckart
potential, allowing us to express P(Ets) in terms of the forward
and reverse barrier heights (Vf and Vr, respectively) and the
magnitude of the imaginary frequency, w w= ∣ ∣b im (which
quantifies the width of the reaction barrier of the transition
state). The quantity = + á ñ -E E E Vts r int f is the total reaction
energy available to overcome the forward barrier of the
transition state. The value of P(Ets) can be evaluated as
(Miller 1979)
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For evaluation of the tunneling-corrected thermal rate
coefficient, we use our theoretical results given in
Section 4.3. There we find Vf=Eb=67.98 meV and

= + D =∣ ∣V E E 125.78r b zp meV, based on the barrier height
and the exoergicity of the exit channel given in Table 2. The
value of ωb=875.9 cm−1 is given in Table 3.

Figure 7 presents our tunneling-corrected thermal rate
coefficient, which is also given numerically in Table 5. At
the highest temperatures shown, the tunneling correction is
unimportant and ktun(T) converges to kmod(T). As is expected,
the correction increases with decreasing temperature. At
T=Eb/kB= 789 K, corresponding to the barrier energy,
tunneling contributes ≈4×10−11 cm3 s−1, or 17%, to the
corrected thermal rate coefficient. Based on the work of
Schwartz et al. (1998), we estimate that there is less than a
factor of 2 uncertainty in the correction at this temperature.
Going to lower temperatures, at T= 75 K, we find ktun(T)≈
10−12 cm3 s−1 and at 10 K, ktun=4.3×10−14 cm3 s−1. Using
the work of Schwartz et al. as a guide, we estimate that there is
at least an order-of-magnitude uncertainty in our ktun at these
temperatures. Schwartz et al. showed that the accuracy of the
Γ(T) factor can be increased by fitting the Eckart potential
function to the PES of the transition state. That level of
theoretical complexity is beyond the scope of this paper.

Given the above caveats about the accuracy of the tunneling
calculations, we have parameterized our results for ktun(T) in

units of cm3 s−1 as
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The accuracy of the fit is better than 18% over the given
temperature ranges.

6.4.3. Comparison to Theoretical Rate Coefficients

In Figure 7, we compare to various theoretical rate
coefficients for Reaction(1): the Langevin value, the value
currently recommended by astrochemical modelers, and the CT
result of Moyano et al. (2004). All three of these are only
translational temperature rate coefficients, as they do not take
into account any possible internal excitation of +H3 .
The Langevin rate coefficient is calculated by integrating

σLvr over a Maxwell–Boltzmann distribution, yielding

p
a
m

=
⎛
⎝⎜

⎞
⎠⎟ ( )k e2 . 40L

D
1 2

This value is temperature independent. Taking into account that
only three of the outgoing channels contribute to H2D

+

formation, the Langevin rate coefficient for Reaction(1) is

= ´ - - ( )k 1.3 10 cm s . 41L
9 3 1

The Langevin value clearly overestimates the rate coefficient
for this reaction at all temperatures of astrochemical relevance.
Going to the high-temperature limit shown in Figure 7, kmod(T)
converges to kL. This is expected given our definition of the
reaction cross section in Equation (27).
The rate coefficient recommended for astrochemical model-

ing appears to have originated with the work of Walmsley et al.
(2004). Their value is

= ´ - - ( )k 1.0 10 cm s 42W
9 3 1

and is given for the temperature range of 10–1000 K. It is not
clear how they derived this Langevin-like value, but their value
clearly overestimates the rate coefficient at astrochemically
relevant temperatures.
Lastly, we have used the CT results of Moyano et al. (2004)

for ground-state +H3 to generate a translational temperature rate
coefficient. We do this by multiplying their cross-section data,
calculated for Tint=0 K, by vr and plotting their monoener-
getic results at the temperatures given by = /T E k2 3r B. The
results are nearly an order of magnitude below kL and
approximately constant with temperature. Compared to kmod,
the Moyano et al. results overestimate the rate coefficient at low
temperatures. This is most likely due to the ZPE-leakage issue
discussed in Section 6.3. At higher temperatures, ZPE leakage
should cease to be an issue. At these temperatures, their results
are, not surprisingly, significantly below kmod, but they are in
rough agreement with our results for ktr.
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6.5. Astrophysical Implications

Our combined experimental and theoretical results indicate
that Reaction(1) proceeds at prestellar core temperatures of
∼10–20 K with a rate coefficient of  10−13 cm3 s−1. This low
rate coefficient arises from tunneling through a reaction barrier
of ≈68 meV. Given the height of this barrier, we expect that the
magnitude of the rate coefficient will be insensitive to the
ortho-to-para ratio of +H3 . The lowest energy level of ortho-H3

+

lies only 2.8 meV above the lowest allowed level for para-H3
+

(Hugo et al. 2009). This is an insignificant difference with
respect to the reaction barrier energy.

Deuterated astrochemical models currently assume a rate
coefficient for Reaction(1) of ∼1×10−9 cm3 s−1 (Roberts &
Millar 2000; Walmsley et al. 2004; Albertsson et al. 2013;
Majumdar et al. 2017). These should be updated to use our
results presented here, but we expect that the result will be to
essentially turn off this channel for deuterating +H3 at prestellar
core temperatures. Thus, current astrochemical models are
likely to overestimate the H2D

+ number density, +( )n H D2 . In
addition, this implies that HD is the primary species
responsible for deuterating +H3 at these low temperatures (Hugo
et al. 2009; Albertsson et al. 2013; Sipilä et al. 2017) via

+  ++ + ( )HD H H D H . 433 2 2

This reaction is barrierless and exoergic by 19.98 meV for the
reactants and products in their lowest energy states (Ramanlal
& Tennyson 2004; Hugo et al. 2009). We are unaware of any
publicly available deuterated astrochemical models and so our
discussions here are purely qualitative.

Our current understanding of collapsing low- and high-mass
prestellar cores may also be affected by Reaction(1) being
essentially closed below 20 K. Ground-based observations of
the deuterium fractionation ratio º + ++ ( ) ( )D n nN D N Hfrac

N H
2 2

2

are used as a chemical clock for comparing to dynamical
models of core formation and evolution (Kong et al. 2015).
These two ions are predicted to form primarily from the
reactions

+  ++ + ( )H D N H N D , 442 2 2 2

+  ++ + ( )H N H N H . 453 2 2 2

Deuterium fractionation increases with time as a core begins to
collapse. It then decreases once a protostar forms and begins to
heat the gas, enabling the endoergic reverse of Reaction(43) to
take place, thereby reducing the formation of N2D

+.
Kong et al. (2015) reported that values of +

D 0.1frac
N H2 are

commonly observed in low- and high-mass prestellar cores.
These values imply chemical timescales longer than the local
freefall timescale given by simple gravitational collapse
models. Kong et al. posited that this is indirect evidence that
magnetic fields play an important role in regulating the
evolution and collapse of prestellar cores, and thereby of star
formation. Given that Reaction(1) is essentially closed,
reducing the H2D

+ abundance, this implies that even longer
chemical timescales are required to match the observed values
of

+
Dfrac

N H2 . If this is the case, then that strengthens the argument
of Kong et al.

7. Summary

We have reported here a combined experimental and
theoretical study of atomic D reacting with +H3 , leading to

the formation of H2D
+. Our findings indicate that this reaction

is essentially closed at the ∼10–20 K temperatures of
astrochemical relevance. We have presented thermal rate
coefficients so that deuterated astrochemical models can be
readily updated accordingly.

The authors thank EvelyneRoueff and Fabrice Dayou for
stimulating conversations. This research was supported, in part,
by the NSF Division of Astronomical Sciences Astronomy &
Astrophysics Grants program under AST-1613267. P.-M.H.
was supported, in part, by the Deutsche Forschungsge-
meinschaft (DFG) under grant No. HI2009/1-1. J.L. thanks
the ULB/VUB computing center and the Consortium des
Equipements de Calcul Intensif (FRS-FNRS and Walloon
Region) for computational support. X.U. is a Senior Research
Associate of the Fonds de la Recherche Scientifique-FNRS and
acknowledges travel support from Fonds de la Recherche
Scientifique-FNRS through IISN grant No. 4.4504.10.
Software: Molpro (Werner et al. 2012, 2015).

ORCID iDs

P.-M. Hillenbrand https://orcid.org/0000-0003-0166-2666
K. P. Bowen https://orcid.org/0000-0003-2483-8863
X. Urbain https://orcid.org/0000-0003-3326-8823
D. W. Savin https://orcid.org/0000-0002-1111-6610

References

Adams, N. G., & Smith, D. 1981, ApJ, 248, 373
Aikawa, Y., Wakelam, V., Hersant, F., Garrod, R. T., & Herbst, E. 2012, ApJ,

760, 40
Albertsson, T., Semenov, D. A., Vasyunin, A. I., Henning, T., & Herbst, E.

2013, ApJS, 207, 27
Alijah, A., & Varandas, A. J. C. 2008, JChPh, 129, 034303
Álvarez-Collado, J. R., Aguado, A., & Paniagua, M. 1995, JChPh, 102, 5725
Bhowmick, S., Bossion, D., Scribano, Y., & Suleimanov, Y. V. 2018, PCCP,

20, 26752
Brouillard, F., & Claeys, W. 1983, in Physics of Ion-Ion and Electron-Ion

Collisions, ed. F. Brouillard & J. W. McGowan (New York: Plenum), 415
Bruhns, H., Kreckel, H., Miller, K., et al. 2010a, RScI, 81, 013112
Bruhns, H., Kreckel, H., Miller, K. A., Urbain, X., & Savin, D. W. 2010b,

PhRvA, 82, 042708
Brünken, S., Sipilä, O., Chambers, E. T., et al. 2014, Natur, 516, 219
Caselli, P., van der Tak, F. F. S., Ceccarelli, C., & Bacmann, A. 2003, A&A,

403, L37
Caselli, P., Vastel, C., Ceccarelli, C., et al. 2008, A&A, 492, 703
de Ruette, N., Miller, K. A., O’Connor, A. P., et al. 2016, ApJ, 816, 31
Dunning, T. H., Jr. 1989, JChPh, 90, 1007
Eckart, C. 1930, PhRv, 35, 1303
Flower, D. R., Pineau Des Forêts, G., & Walmsley, C. M. 2006, A&A,

449, 621
Friesen, R. K., Di Francesco, J., Bourke, T. L., et al. 2014, ApJ, 797, 27
Friesen, R. K., Di Francesco, J., Myers, P. C., et al. 2010, ApJ, 718, 666
Gerlich, D., Herbst, E., & Roueff, E. 2002, P&SS, 50, 1275
Gerlich, D., & Schlemmer, S. 2002, P&SS, 50, 1287
Giles, K., Adams, N. G., & Smith, D. 1992, JPhCh, 96, 7645
Grenier, I. A., Black, J. H., & Strong, A. W. 2015, ARA&A, 53, 199
Guo, Y., Thompson, D. L., & Sewell, T. D. 1996, JChPh, 104, 576
Habershon, S., Manolopoulos, D. E., Markland, T. E., & Miller, T. E., III 2013,

ARPC, 64, 387
Harju, J., Haikala, L. K., Lehtinen, K., et al. 2006, A&A, 454, L55
Huber, K., & Herzberg, G. 1979, Molecular Spectra and Molecular Structure:

Constants of Diatomic Molecules, Vol. IV (Boston, MA: Springer)
Hugo, E., Asvany, O., & Schlemmer, S. 2009, JChPh, 130, 164302
Jankunas, J., Sneha, M., Zare, R. N., et al. 2014, PNAS, 111, 15
Jaquet, R. 2013, MoPh, 111, 2606
Jiang, G., Wang, H. Y., & Zhu, Z. H. 1989, CPL, 91, 267
Johnston, H. S. 1966, Gas Phase Reaction Rate Theory (New York: Ronald

Press Co.), 37
Kendall, R. A., Dunning, T. H., & Harrison, R. J. 1992, JChPh, 96, 6796

15

The Astrophysical Journal, 877:38 (16pp), 2019 May 20 Hillenbrand et al.

https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-0166-2666
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-2483-8863
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0003-3326-8823
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://orcid.org/0000-0002-1111-6610
https://doi.org/10.1086/159162
http://adsabs.harvard.edu/abs/1981ApJ...248..373A
https://doi.org/10.1088/0004-637X/760/1/40
http://adsabs.harvard.edu/abs/2012ApJ...760...40A
http://adsabs.harvard.edu/abs/2012ApJ...760...40A
https://doi.org/10.1088/0067-0049/207/2/27
http://adsabs.harvard.edu/abs/2013ApJS..207...27A
https://doi.org/10.1063/1.2953571
http://adsabs.harvard.edu/abs/2008JChPh.129c4303A
https://doi.org/10.1063/1.469303
http://adsabs.harvard.edu/abs/1995JChPh.102.5725R
https://doi.org/10.1039/C8CP05398G
http://adsabs.harvard.edu/abs/2018PCCP...2026752B
http://adsabs.harvard.edu/abs/2018PCCP...2026752B
http://adsabs.harvard.edu/abs/1983piie.conf..415B
https://doi.org/10.1063/1.3280227
http://adsabs.harvard.edu/abs/2010RScI...81a3112B
https://doi.org/10.1103/PhysRevA.82.042708
http://adsabs.harvard.edu/abs/2010PhRvA..82d2708B
https://doi.org/10.1038/nature13924
http://adsabs.harvard.edu/abs/2014Natur.516..219B
https://doi.org/10.1051/0004-6361:20030526
http://adsabs.harvard.edu/abs/2003A&amp;A...403L..37C
http://adsabs.harvard.edu/abs/2003A&amp;A...403L..37C
https://doi.org/10.1051/0004-6361:20079009
http://adsabs.harvard.edu/abs/2008A&amp;A...492..703C
https://doi.org/10.3847/0004-637X/816/1/31
http://adsabs.harvard.edu/abs/2016ApJ...816...31D
https://doi.org/10.1063/1.456153
http://adsabs.harvard.edu/abs/1989JChPh..90.1007D
https://doi.org/10.1103/PhysRev.35.1303
http://adsabs.harvard.edu/abs/1930PhRv...35.1303E
https://doi.org/10.1051/0004-6361:20054246
http://adsabs.harvard.edu/abs/2006A&amp;A...449..621F
http://adsabs.harvard.edu/abs/2006A&amp;A...449..621F
https://doi.org/10.1088/0004-637X/797/1/27
http://adsabs.harvard.edu/abs/2014ApJ...797...27F
https://doi.org/10.1088/0004-637X/718/2/666
http://adsabs.harvard.edu/abs/2010ApJ...718..666F
https://doi.org/10.1016/S0032-0633(02)00094-6
http://adsabs.harvard.edu/abs/2002P&amp;SS...50.1275G
https://doi.org/10.1016/S0032-0633(02)00095-8
http://adsabs.harvard.edu/abs/2002P&amp;SS...50.1287G
https://doi.org/10.1021/j100198a030
https://doi.org/10.1146/annurev-astro-082214-122457
http://adsabs.harvard.edu/abs/2015ARA&amp;A..53..199G
https://doi.org/10.1063/1.470853
http://adsabs.harvard.edu/abs/1996JChPh.104..576G
https://doi.org/10.1146/annurev-physchem-040412-110122
http://adsabs.harvard.edu/abs/2013ARPC...64..387H
https://doi.org/10.1051/0004-6361:20065337
http://adsabs.harvard.edu/abs/2006A&amp;A...454L..55H
https://doi.org/10.1063/1.3089422
http://adsabs.harvard.edu/abs/2009JChPh.130p4302H
https://doi.org/10.1073/pnas.1315725111
http://adsabs.harvard.edu/abs/2014PNAS..111...15J
https://doi.org/10.1080/00268976.2013.818727
http://adsabs.harvard.edu/abs/2013MolPh.111.2606J
https://doi.org/10.1016/S0009-2614(97)01372-9
http://adsabs.harvard.edu/abs/1998CPL...284..267J
https://doi.org/10.1063/1.462569
http://adsabs.harvard.edu/abs/1992JChPh..96.6796K


Knowles, P. J., & Werner, H.-J. 1985, CPL, 115, 259
Knowles, P. J., & Werner, H.-J. 1988, CPL, 145, 514
Kong, S., Caselli, P., Tan, J. C., Wakelam, V., & Sipilä, O. 2015, ApJ, 804, 98
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team 2018, NIST

Atomic Spectra Database (ver. 5.5.6) (Gaithersburg, MD: National Institute
of Standards and Technology), https://physics.nist.gov/asd

Kreckel, H., Bruhns, H., Čížek, M., et al. 2010, Sci, 329, 69
Kreckel, H., Novotný, O., Crabtree, K. N., et al. 2010, PhRvA, 82, 042715
Kylänpää, I., & Rantala, T. T. 2011, JChPh, 135, 104310
Lee, J.-E., & Bergin, E. A. 2015, ApJ, 799, 104
Lee, K. L. K., Quinn, M. S., Kolmann, S. J., Kable, S. H., & Jordan, M. J. T.

2018, JChPh, 148, 194113
Levine, R. D. 2005, Molecular Reaction Dynamics (Cambridge: Cambridge

Univ. Press)
Lie, G. C., & Frye, D. 1992, JChPh, 96, 6784
Linstrom, P. J., & Mallard, W. G. (ed.) 2018, NIST Chemistry WebBook,

NIST Standard Reference Database 69 (Gaithersburg MD: National Institute
of Standards and Technology), doi:10.18434/T4D303

Lu, D., & Hase, W. L. 1989, JChPh, 91, 7490
Majumdar, L., Gratier, P., Ruaud, M., et al. 2017, MNRAS, 466, 4470
McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36
McLaughlin, B. M., Stancil, P. C., Sadeghpour, H. R., & Forrey, R. C. 2017,

JPhB, 50, 114001
Mielke, S. L., Schwenke, D. W., & Peterson, K. A. 2005, JChPh, 122, 224313
Millar, T. J., Bennett, A., & Herbst, E. 1989, ApJ, 340, 906
Miller, K. A., Bruhns, H., Čížek, M., et al. 2012, PhRvA, 86, 032714
Miller, K. A., Bruhns, H., Eliášek, J., et al. 2011, PhRvA, 84, 052709
Miller, W. H. 1979, JAChS, 101, 6810
Morong, C. P., Gottfried, J. L., & Oka, T. 2009, JMoSp, 255, 13
Moyano, G. E., Pearson, D., & Collins, M. A. 2004, JChPh, 121, 12396
O’Connor, A. P., Grussie, F., Bruhns, H., et al. 2015a, RScI, 86, 113306
O’Connor, A. P., Urbain, X., Stützel, J., et al. 2015b, ApJ, 219, 6
O’Hanlon, J. F. 2003, A User’s Guide to Vacuum Technology (Hoboken, NJ:

Wiley)

Pagani, L., Lesaffre, P., Jorfi, M., et al. 2013, A&A, 551, A38
Pagani, L., Vastel, C., Hugo, E., et al. 2009, A&A, 494, 623
Pavanello, M., Adamowicz, L., Alijah, A., et al. 2012, JChPh, 136, 184303
Phelps, A. V. 1992, JPCRD, 21, 883
Pillai, T., Caselli, P., Kauffmann, J., et al. 2012, ApJ, 751, 135
Ramanlal, J., & Tennyson, J. 2004, MNRAS, 354, 161
Rienstra-Kiracofe, J. C., Tschumper, G. S., Schaefer, H. F., Nandi, S., &

Ellison, G. B. 2002, ChRv, 102, 231
Roberts, H., & Millar, T. J. 2000, A&A, 361, 388
Rodgers, S. D., & Millar, T. J. 1996, MNRAS, 280, 1046
Sanz-Sanz, C., Roncero, O., Paniagua, M., & Aguado, A. 2013, JChPh, 139,

184302
Schwartz, M., Marshall, P., Berry, R. J., Ehlers, C. J., & Petersson, G. A. 1998,

JPhChA, 102, 10074
Schwerdtfeger, P., & Nagle, J. K. 2019, MolPh, 117, 1200
Seely, D., Bruhns, H., Savin, D., et al. 2008, NIMPA, 585, 69
Sipilä, O., Caselli, P., & Harju, J. 2013, A&A, 554, A92
Sipilä, O., Harju, J., & Caselli, P. 2017, A&A, 607, A26
Stark, R., van der Tak, F. F. S., & van Dishoeck, E. F. 1999, ApJL, 521,

L67
Strömholm, C., Schneider, I. F., Sundström, G., et al. 1995, PhRvA, 52,

R4320
Swift, J. J. 2009, ApJ, 705, 1456
van der Tak, F. F. S. 2006, RSPTA, 364, 3101
Vastel, C., Caselli, P., Ceccarelli, C., et al. 2006, ApJ, 645, 1198
Vastel, C., Phillips, T. G., & Yoshida, H. 2004, ApJL, 606, L127
Walmsley, C. M., Flower, D. R., & Pineau des Forêts, G. 2004, A&A,

418, 1035
Werner, H.-J., & Knowles, P. J. 1985, JChPh, 82, 5053
Werner, H.-J., & Knowles, P. J. 1988, JChPh, 89, 5803
Werner, H.-J., Knowles, P. J., Knizia, G., et al. 2015, MOLPRO, version

2015.1, a package of ab initio programs, Cardiff, UK
Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., & Schütz, M. 2012,

WIREs Comput. Mol. Sci., 2, 242

16

The Astrophysical Journal, 877:38 (16pp), 2019 May 20 Hillenbrand et al.

https://doi.org/10.1016/0009-2614(85)80025-7
http://adsabs.harvard.edu/abs/1985CPL...115..259K
https://doi.org/10.1016/0009-2614(88)87412-8
http://adsabs.harvard.edu/abs/1988CPL...145..514K
https://doi.org/10.1088/0004-637X/804/2/98
http://adsabs.harvard.edu/abs/2015ApJ...804...98K
https://physics.nist.gov/asd
https://doi.org/10.1126/science.1187191
http://adsabs.harvard.edu/abs/2010Sci...329...69K
https://doi.org/10.1103/PhysRevA.82.042715
http://adsabs.harvard.edu/abs/2010PhRvA..82d2715K
https://doi.org/10.1063/1.3633516
http://adsabs.harvard.edu/abs/2011JChPh.135j4310K
https://doi.org/10.1088/0004-637X/799/1/104
http://adsabs.harvard.edu/abs/2015ApJ...799..104L
https://doi.org/10.1063/1.5023508
http://adsabs.harvard.edu/abs/2018JChPh.148s4113L
https://doi.org/10.1063/1.462567
http://adsabs.harvard.edu/abs/1992JChPh..96.6784L
https://doi.org/10.18434/T4D303
https://doi.org/10.1063/1.457273
http://adsabs.harvard.edu/abs/1989JChPh..91.7490L
https://doi.org/10.1093/mnras/stw3360
http://adsabs.harvard.edu/abs/2017MNRAS.466.4470M
https://doi.org/10.1051/0004-6361/201220465
http://adsabs.harvard.edu/abs/2013A&amp;A...550A..36M
https://doi.org/10.1088/1361-6455/aa6c1f
http://adsabs.harvard.edu/abs/2017JPhB...50k4001M
https://doi.org/10.1063/1.1917838
http://adsabs.harvard.edu/abs/2005JChPh.122v4313M
https://doi.org/10.1086/167444
http://adsabs.harvard.edu/abs/1989ApJ...340..906M
https://doi.org/10.1103/PhysRevA.86.032714
http://adsabs.harvard.edu/abs/2012PhRvA..86c2714M
https://doi.org/10.1103/PhysRevA.84.052709
http://adsabs.harvard.edu/abs/2011PhRvA..84e2709M
https://doi.org/10.1021/ja00517a004
https://doi.org/10.1016/j.jms.2009.02.010
http://adsabs.harvard.edu/abs/2009JMoSp.255...13M
https://doi.org/10.1063/1.1810479
http://adsabs.harvard.edu/abs/2004JChPh.12112396M
https://doi.org/10.1063/1.4934873
http://adsabs.harvard.edu/abs/2015RScI...86k3306O
https://doi.org/10.1088/0067-0049/219/1/6
http://adsabs.harvard.edu/abs/2015ApJS..219....6O
https://doi.org/10.1051/0004-6361/201117161
http://adsabs.harvard.edu/abs/2013A&amp;A...551A..38P
https://doi.org/10.1051/0004-6361:200810587
http://adsabs.harvard.edu/abs/2009A&amp;A...494..623P
https://doi.org/10.1063/1.4711756
http://adsabs.harvard.edu/abs/2012JChPh.136r4303P
https://doi.org/10.1063/1.555917
http://adsabs.harvard.edu/abs/1992JPCRD..21..883P
https://doi.org/10.1088/0004-637X/751/2/135
http://adsabs.harvard.edu/abs/2012ApJ...751..135P
https://doi.org/10.1111/j.1365-2966.2004.08178.x
http://adsabs.harvard.edu/abs/2004MNRAS.354..161R
https://doi.org/10.1021/cr990044u
http://adsabs.harvard.edu/abs/2000A&amp;A...361..388R
https://doi.org/10.1093/mnras/280.4.1046
http://adsabs.harvard.edu/abs/1996MNRAS.280.1046R
https://doi.org/10.1063/1.4827640
http://adsabs.harvard.edu/abs/2013JChPh.139r4302S
http://adsabs.harvard.edu/abs/2013JChPh.139r4302S
https://doi.org/10.1021/jp9822891
http://adsabs.harvard.edu/abs/1998JPCA..10210074S
https://doi.org/10.1080/00268976.2018.1535143
https://doi.org/10.1016/j.nima.2007.10.041
http://adsabs.harvard.edu/abs/2008NIMPA.585...69S
https://doi.org/10.1051/0004-6361/201220922
http://adsabs.harvard.edu/abs/2013A&amp;A...554A..92S
https://doi.org/10.1051/0004-6361/201731039
http://adsabs.harvard.edu/abs/2017A&amp;A...607A..26S
https://doi.org/10.1086/312182
http://adsabs.harvard.edu/abs/1999ApJ...521L..67S
http://adsabs.harvard.edu/abs/1999ApJ...521L..67S
https://doi.org/10.1103/PhysRevA.52.R4320
http://adsabs.harvard.edu/abs/1995PhRvA..52.4320S
http://adsabs.harvard.edu/abs/1995PhRvA..52.4320S
https://doi.org/10.1088/0004-637X/705/2/1456
http://adsabs.harvard.edu/abs/2009ApJ...705.1456S
https://doi.org/10.1098/rsta.2006.1879
http://adsabs.harvard.edu/abs/2006RSPTA.364.3101V
https://doi.org/10.1086/504371
http://adsabs.harvard.edu/abs/2006ApJ...645.1198V
https://doi.org/10.1086/421265
http://adsabs.harvard.edu/abs/2004ApJ...606L.127V
https://doi.org/10.1051/0004-6361:20035718
http://adsabs.harvard.edu/abs/2004A&amp;A...418.1035W
http://adsabs.harvard.edu/abs/2004A&amp;A...418.1035W
https://doi.org/10.1063/1.448627
http://adsabs.harvard.edu/abs/1985JChPh..82.5053W
https://doi.org/10.1063/1.455556
http://adsabs.harvard.edu/abs/1988JChPh..89.5803W
https://doi.org/10.1002/wcms.82

	1. Introduction
	2. Experimental Apparatus
	2.1. Neutral Beam
	2.2. Cation Beam
	2.3. Interaction Region
	2.4. Signal Detection
	2.5. Neutral Current

	3. Measurement and Analysis
	3.1. Signal Determination
	3.2. Data Acquisition Procedure
	3.3. Relative Translational Energy and Beam Overlap
	3.4. Merged-beams Rate Coefficient

	4. Theoretical Approach
	4.1. Energy Profile of the Reaction Path
	4.2. Topography of the H4+ PES
	4.3. Ab Initio Results
	4.4. Further Theoretical Considerations
	4.4.1. ZPE-corrected Profiles
	4.4.2. Effect of Deuteration
	4.4.3. Anharmonic and Nonadiabatic Effects


	5. Merged-beams Rate Coefficient Results
	6. Discussion
	6.1. Competing Channels
	6.2. Cross-section Model for the Experimental Results
	6.3. Comparison to Theoretical Cross Sections
	6.4. Thermal and Translational Temperature Rate Coefficients
	6.4.1. Model Rate Coefficients
	6.4.2. Tunneling-corrected Thermal Rate Coefficient
	6.4.3. Comparison to Theoretical Rate Coefficients

	6.5. Astrophysical Implications

	7. Summary
	References



